login
A125777
Moessner triangle based on A000217.
2
1, 3, 6, 13, 28, 21, 69, 161, 137, 55, 433, 1078, 1017, 477, 120, 3141, 8245, 8437, 4460, 1337, 231, 25873, 71008, 77620, 45058, 15415, 3220, 406, 238629, 680451, 786012, 492264, 186729, 44955, 6930, 666, 2436673, 7184170, 8699205, 5804448, 2394150
OFFSET
1,2
COMMENTS
Begin with the triangular numbers A000217 and circle every T(k)-th term, getting the doubly triangular numbers, A002817. Per instructions shown in A125714, take partial sums of the uncircled terms in row 1, denoting this as row 2. Circle the row 2 terms which are one place to the left of row 1 terms. Take partial sums again in analogous operations for subsequent rows.
Left border = A104989: (1, 3, 13, 69, 433...). Right border = the doubly triangular numbers starting (1, 6, 21...): A002817.
REFERENCES
J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.
LINKS
G. S. Kazandzidis, On a conjecture of Moessner and a general problem, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.
Dexter Kozen and Alexandra Silva, On Moessner's theorem, Amer. Math. Monthly 120(2) (2013), 131-139.
Calvin T. Long, Strike it out--add it up, Math. Gaz. 66 (438) (1982), 273-277.
Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.
M. Niqui and J. J. M. M. Rutten, A proof of Moessner's theorem by coinduction, High.-Order Symb. Comput. 24(3) (2011), 191-206.
Oskar Perron, Beweis des Moessnerschen Satzes, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.
EXAMPLE
First few rows of the triangle are as follows:
1;
3, 6;
13, 28, 21;
69, 161, 137, 55;
433, 1078, 1017, 477, 120;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Dec 07 2006
EXTENSIONS
More terms from Joshua Zucker, Jun 17 2007
STATUS
approved