login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Moessner triangle based on A000217.
2

%I #26 Aug 01 2019 09:12:08

%S 1,3,6,13,28,21,69,161,137,55,433,1078,1017,477,120,3141,8245,8437,

%T 4460,1337,231,25873,71008,77620,45058,15415,3220,406,238629,680451,

%U 786012,492264,186729,44955,6930,666,2436673,7184170,8699205,5804448,2394150

%N Moessner triangle based on A000217.

%C Begin with the triangular numbers A000217 and circle every T(k)-th term, getting the doubly triangular numbers, A002817. Per instructions shown in A125714, take partial sums of the uncircled terms in row 1, denoting this as row 2. Circle the row 2 terms which are one place to the left of row 1 terms. Take partial sums again in analogous operations for subsequent rows.

%C Left border = A104989: (1, 3, 13, 69, 433...). Right border = the doubly triangular numbers starting (1, 6, 21...): A002817.

%D J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.

%H Joshua Zucker, <a href="/A125777/b125777.txt">Table of n, a(n) for n = 1..55</a>

%H G. S. Kazandzidis, <a href="http://www.hms.gr/apothema/?s=sap&amp;i=20">On a conjecture of Moessner and a general problem</a>, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.

%H Dexter Kozen and Alexandra Silva, <a href="https://www.jstor.org/stable/10.4169/amer.math.monthly.120.02.131">On Moessner's theorem</a>, Amer. Math. Monthly 120(2) (2013), 131-139.

%H Calvin T. Long, <a href="https://doi.org/10.2307/3615513">Strike it out--add it up</a>, Math. Gaz. 66 (438) (1982), 273-277.

%H Alfred Moessner, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1951_0029.pdf">Eine Bemerkung über die Potenzen der natürlichen Zahlen</a>, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.

%H M. Niqui and J. J. M. M. Rutten, <a href="https://doi.org/10.1007/s10990-012-9082-7">A proof of Moessner's theorem by coinduction</a>, High.-Order Symb. Comput. 24(3) (2011), 191-206.

%H Oskar Perron, <a href="https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1951_0031-0034.pdf">Beweis des Moessnerschen Satzes</a>, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.

%e First few rows of the triangle are as follows:

%e 1;

%e 3, 6;

%e 13, 28, 21;

%e 69, 161, 137, 55;

%e 433, 1078, 1017, 477, 120;

%e ...

%Y Cf. A125714, A002817, A104989, A000217.

%K nonn,tabl

%O 1,2

%A _Gary W. Adamson_, Dec 07 2006

%E More terms from _Joshua Zucker_, Jun 17 2007