The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A370830 Primes p such that the polynomial x^4-x^3-x^2-x-1 is irreducible mod p. 2
 2, 5, 31, 43, 53, 79, 83, 89, 97, 109, 131, 139, 151, 199, 229, 233, 239, 283, 313, 317, 359, 367, 389, 433, 443, 479, 487, 569, 571, 577, 601, 617, 641, 643, 659, 677, 769, 797, 823, 853, 857, 929, 937, 941, 971, 1013, 1019, 1049, 1063, 1069, 1087, 1093, 1117, 1163, 1171, 1181, 1231, 1249, 1283 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 MAPLE P:= x^4 - x^3 - x^2 - x - 1: select(p -> Irreduc(P) mod p, [seq(ithprime(i), i=1..1000)]); PROG (Python) from itertools import islice from sympy import Poly, nextprime from sympy.abc import x def A370830_gen(): # generator of terms p = 2 while True: if Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=p).is_irreducible: yield p p = nextprime(p) A370830_list = list(islice(A370830_gen(), 20)) # Chai Wah Wu, Mar 14 2024 CROSSREFS Subsequence of A106283. Cf. 106309. Sequence in context: A059086 A363243 A215168 * A266478 A107389 A261750 Adjacent sequences: A370826 A370827 A370828 * A370831 A370832 A370833 KEYWORD nonn AUTHOR Robert Israel, Mar 13 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 23:09 EDT 2024. Contains 372720 sequences. (Running on oeis4.)