The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A370830 Primes p such that the polynomial x^4-x^3-x^2-x-1 is irreducible mod p. 2
2, 5, 31, 43, 53, 79, 83, 89, 97, 109, 131, 139, 151, 199, 229, 233, 239, 283, 313, 317, 359, 367, 389, 433, 443, 479, 487, 569, 571, 577, 601, 617, 641, 643, 659, 677, 769, 797, 823, 853, 857, 929, 937, 941, 971, 1013, 1019, 1049, 1063, 1069, 1087, 1093, 1117, 1163, 1171, 1181, 1231, 1249, 1283 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
MAPLE
P:= x^4 - x^3 - x^2 - x - 1:
select(p -> Irreduc(P) mod p, [seq(ithprime(i), i=1..1000)]);
PROG
(Python)
from itertools import islice
from sympy import Poly, nextprime
from sympy.abc import x
def A370830_gen(): # generator of terms
p = 2
while True:
if Poly(x*(x*(x*(x-1)-1)-1)-1, x, modulus=p).is_irreducible:
yield p
p = nextprime(p)
A370830_list = list(islice(A370830_gen(), 20)) # Chai Wah Wu, Mar 14 2024
CROSSREFS
Subsequence of A106283. Cf. 106309.
Sequence in context: A059086 A363243 A215168 * A266478 A107389 A261750
KEYWORD
nonn
AUTHOR
Robert Israel, Mar 13 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 23:09 EDT 2024. Contains 372720 sequences. (Running on oeis4.)