OFFSET
1,1
COMMENTS
If you play the game with odds of 3:2 with one dice, you can decide what happens to the unused number. In the present sequence, this number is ignored without effect. However, if one defines the occurrence of the 6th number as a draw, which interrupts consecutive wins by both players, then the sequence pair A370825/A370826 results. The addition of a draw increases the odds ratio in favor of the player who has the higher chance of winning a single round. The relative advantage is small with 2 games to be won, i.e., 2/(63/32)-1 = 1/63, with 3 rounds 1/27, with 4 rounds 965/16443, but increases with a higher number of consecutive rounds to be won, and reaches asymptotically 1/8.
FORMULA
a(n)/A370828(n) = (2/3) * (3/5)^n * ((5/2)^n - 1) / (1 - (3/5)^n).
EXAMPLE
a(n)/A370828(n) for n = 1..8: 3/2, 63/32, 1053/392, 16443/4352, 250533/46112, 28431/3584, 56859813/4860032, 853737003/49160192.
PROG
(PARI) a370827(n) = numerator((2/3) * (3/5)^n * ((5/2)^n - 1) / (1 - (3/5)^n))
(Python)
from math import gcd
def A370827(n): return (a:=3**(n-1)*(5**n-(1<<n)))//gcd(a, 5**n-3**n<<n-1) # Chai Wah Wu, Mar 12 2024
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Hugo Pfoertner, Mar 09 2024
STATUS
approved