login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227579
Number of lattice paths from {n}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
2
1, 1, 5, 290, 456033, 36470203156, 237791136700913751, 184570140930218389159747070, 23408169635197679203800470649923362577, 637028433009539403532335279417025047587902906655768, 4725612998324981086891784010767387049970117446517002416810380479702
OFFSET
0,3
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..14 (terms 0..12 from Alois P. Heinz)
EXAMPLE
a(2) = 5: [(2,2),(0,2),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)].
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(
i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))
end:
a:= n-> `if`(n=0, 1, b([n$n])):
seq(a(n), n=0..9);
MATHEMATICA
b[l_] := b[l] = If[l[[-1]] == 0, 1, Sum[Sum[b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i - 1]]], l[[i]] - 1}], {i, 1, Length[l]}]];
a[n_] := If[n == 0, 1, b[Table[n, {n}]]];
a /@ Range[0, 9] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A227578.
Sequence in context: A376465 A337540 A354962 * A257045 A256422 A140016
KEYWORD
nonn,hard
AUTHOR
Alois P. Heinz, Jul 16 2013
STATUS
approved