login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lattice paths from {n}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
2

%I #21 Jan 03 2021 09:24:59

%S 1,1,5,290,456033,36470203156,237791136700913751,

%T 184570140930218389159747070,23408169635197679203800470649923362577,

%U 637028433009539403532335279417025047587902906655768,4725612998324981086891784010767387049970117446517002416810380479702

%N Number of lattice paths from {n}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.

%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A227579/b227579.txt">Table of n, a(n) for n = 0..14</a> (terms 0..12 from Alois P. Heinz)

%e a(2) = 5: [(2,2),(0,2),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)].

%p b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop(

%p i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l)))

%p end:

%p a:= n-> `if`(n=0, 1, b([n$n])):

%p seq(a(n), n=0..9);

%t b[l_] := b[l] = If[l[[-1]] == 0, 1, Sum[Sum[b[ReplacePart[l, i -> j]], {j, If[i == 1, 0, l[[i - 1]]], l[[i]] - 1}], {i, 1, Length[l]}]];

%t a[n_] := If[n == 0, 1, b[Table[n, {n}]]];

%t a /@ Range[0, 9] (* _Jean-François Alcover_, Jan 03 2021, after _Alois P. Heinz_ *)

%Y Main diagonal of A227578.

%K nonn,hard

%O 0,3

%A _Alois P. Heinz_, Jul 16 2013