login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227577
Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.
2
1, -1, 1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 1, 1, 1, 0, -1, -1, -5, -1, -1, 0, 17, 17, 13, 5, -5, -13, -17, -17, 0, 17, 17, 47, 13, 47, 17, 17, 0, -31, -31, -107, -73, -13, 13, 73, 107, 31, 31, 0, -31, -31, -355
OFFSET
0,25
COMMENTS
The difference table of the Euler polynomials evaluated at x=1:
1, 1/2, 0, -1/4, 0, 1/2, 0, -17/8, ...
-1/2, -1/2, -1/4, 1/4, 1/2, -1/2, -17/8, 17/8, ...
0, 1/4, 1/2, 1/4; -1, -13/8, 17/4, 107/8, ...
1/4, 1/4, -1/4, -5/4, -5/8, 47/8, 73/8, -355/8, ...
0, -1/2, -1, 5/8 13/2, 13/4, -107/2, -655/8, ...
-1/2, -1/2, 13/8, 47/8, -13/4, -227/4, -227/8, 5687/8, ...
0, 17/8, 17/4, -73/8, -107/2, 227/8, 2957/4, 2957/8, ...
17/8, 17/8, -107/8, -355/8, 655/8, 5687/8, -2957/8, -107125/8, ...
To compute the difference table, take
1, 1/2;
-1/2;
The next term is always half of the sum of the antidiagonals. Hence (-1/2 + 1/2 = 0)
1, 1/2, 0;
-1/2, -1/2;
0;
The first column (inverse binomial transform) lists the numbers (1, -1/2, 0, 1/4, ..., not in the OEIS; corresponds to A027641/A027642). See A209308 and A060096.
A198631(n)/A006519(n+1) is an autosequence. See A181722.
Note the main diagonal: 1, -1/2, 1/2, -5/4, 13/2, -227/4, 2957/4, -107125/8, .... (See A212196/A181131.)
This twice the first upper diagonal. The autosequence is of the second kind.
From 0, -1, the algorithm gives A226158(n), full Genocchi numbers, autosequence of the first kind.
The difference table of the Bernoulli polynomials evaluated at x=1 is (apart from signs) A085737/A085738 and its analysis by Ludwig Seidel was discussed in the Luschny link. - Peter Luschny, Jul 18 2013
EXAMPLE
Read by antidiagonals:
1;
-1/2, 1/2;
0, -1/2, 0;
1/4, 1/4, -1/4, -1/4;
0, 1/4, 1/2, 1/4, 0;
-1/2, -1/2, -1/4, 1/4, 1/2, 1/2;
0, -1/2, - 1, -5/4, -1, -1/2, 0;
...
Row sums: 1, 0, -1/2, 0, 1, 0, -17/4, 0, ... = 2*A198631(n+1)/A006519(n+2).
Denominators: 1, 1, 2, 1, 1, 1, 4, 1, ... = A160467(n+2)?
MAPLE
DifferenceTableEulerPolynomials := proc(n) local A, m, k, x;
A := array(0..n, 0..n); x := 1;
for m from 0 to n do for k from 0 to n do A[m, k]:= 0 od od;
for m from 0 to n do A[m, 0] := euler(m, x);
for k from m-1 by -1 to 0 do
A[k, m-k] := A[k+1, m-k-1] - A[k, m-k-1] od od;
LinearAlgebra[Transpose](convert(A, Matrix)) end:
DifferenceTableEulerPolynomials(7); # Peter Luschny, Jul 18 2013
MATHEMATICA
t[0, 0] = 1; t[0, k_] := EulerE[k, 1]; t[n_, 0] := -t[0, n]; t[n_, k_] := t[n, k] = t[n-1, k+1] - t[n-1, k]; Table[t[n-k, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013 *)
PROG
(Sage)
def DifferenceTableEulerPolynomialsEvaluatedAt1(n) :
@CachedFunction
def ep1(n): # Euler polynomial at x=1
if n < 2: return 1 - n/2
s = add(binomial(n, k)*ep1(k) for k in (0..n-1))
return 1 - s/2
T = matrix(QQ, n)
for m in range(n) : # Compute difference table
T[m, 0] = ep1(m)
for k in range(m-1, -1, -1) :
T[k, m-k] = T[k+1, m-k-1] - T[k, m-k-1]
return T
def A227577_list(m):
D = DifferenceTableEulerPolynomialsEvaluatedAt1(m)
return [D[k, n-k].numerator() for n in range(m) for k in (0..n)]
A227577_list(12) # Peter Luschny, Jul 18 2013
CROSSREFS
KEYWORD
sign
AUTHOR
Paul Curtz, Jul 16 2013
EXTENSIONS
Corrected by Jean-François Alcover, Jul 17 2013
STATUS
approved