|
|
A033567
|
|
a(n) = (2*n-1)*(4*n-1).
|
|
14
|
|
|
1, 3, 21, 55, 105, 171, 253, 351, 465, 595, 741, 903, 1081, 1275, 1485, 1711, 1953, 2211, 2485, 2775, 3081, 3403, 3741, 4095, 4465, 4851, 5253, 5671, 6105, 6555, 7021, 7503, 8001, 8515, 9045, 9591, 10153, 10731, 11325, 11935, 12561, 13203, 13861, 14535, 15225
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n+1) = A005563(1), A061037(3), A061039(5), A061041(7), A061043(9), A061045(11), A061047(13), A061049(15). Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, ... spectra of hydrogen. - Paul Curtz, Oct 08 2008
Sequence found by reading the segment [1, 3] together with the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = a(n-1) + 16*n - 14 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 06 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2).
E.g.f.: (1 + 2*x + 8*x^2)*exp(x).
G.f.: (1 + 15*x^2)/(1 - x)^3. (End)
|
|
MATHEMATICA
|
Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *)
LinearRecurrence[{3, -3, 1}, {1, 3, 21}, 50] (* Harvey P. Dale, Aug 25 2019 *)
|
|
PROG
|
(PARI) vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
(MAGMA) [(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
|
|
CROSSREFS
|
Cf. A045944.
Sequence in context: A340687 A152773 A039595 * A181156 A162394 A129212
Adjacent sequences: A033564 A033565 A033566 * A033568 A033569 A033570
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Michel Marcus, Apr 12 2015
|
|
STATUS
|
approved
|
|
|
|