The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033567 a(n) = (2*n-1)*(4*n-1). 14
 1, 3, 21, 55, 105, 171, 253, 351, 465, 595, 741, 903, 1081, 1275, 1485, 1711, 1953, 2211, 2485, 2775, 3081, 3403, 3741, 4095, 4465, 4851, 5253, 5671, 6105, 6555, 7021, 7503, 8001, 8515, 9045, 9591, 10153, 10731, 11325, 11935, 12561, 13203, 13861, 14535, 15225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n+1) = A005563(1), A061037(3), A061039(5), A061041(7), A061043(9), A061045(11), A061047(13), A061049(15). Lyman, Balmer, Paschen, Brackett, Pfund, Humphreys, Hansen-Strong, ... spectra of hydrogen. - Paul Curtz, Oct 08 2008 Sequence found by reading the segment [1, 3] together with the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = a(n-1) + 16*n - 14 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010 From G. C. Greubel, Jul 06 2017: (Start) a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2). E.g.f.: (1 + 2*x + 8*x^2)*exp(x). G.f.: (1 + 15*x^2)/(1 - x)^3. (End) From Amiram Eldar, Jan 03 2022: (Start) Sum_{n>=0} 1/a(n) = 1 + Pi/4 - log(2)/2. Sum_{n>=0} (-1)^n/a(n) = 1 + (sqrt(2)-1)*Pi/4 + log(sqrt(2)-1)/sqrt(2). (End) MATHEMATICA Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *) LinearRecurrence[{3, -3, 1}, {1, 3, 21}, 50] (* Harvey P. Dale, Aug 25 2019 *) PROG (PARI) vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015 (MAGMA) [(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018 CROSSREFS Cf. A045944, A014634. Sequence in context: A340687 A152773 A039595 * A181156 A162394 A129212 Adjacent sequences:  A033564 A033565 A033566 * A033568 A033569 A033570 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Michel Marcus, Apr 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 30 15:29 EDT 2022. Contains 354943 sequences. (Running on oeis4.)