login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356809
Fibonacci numbers which are not the sum of two squares.
2
3, 21, 55, 987, 2584, 6765, 17711, 46368, 317811, 832040, 2178309, 5702887, 14930352, 102334155, 267914296, 701408733, 1836311903, 4807526976, 12586269025, 32951280099, 86267571272, 225851433717, 591286729879, 1548008755920, 10610209857723
OFFSET
1,1
LINKS
EXAMPLE
F(4) = 3; 3 != x^2 + y^2 as no positive integers x, y >= 0 are the solution of this Diophantine equation.
MATHEMATICA
Select[Fibonacci[Range[65]], SquaresR[2, #] == 0 &] (* Amiram Eldar, Aug 29 2022 *)
PROG
(PARI) is(n)=if(n%4==3, return(1)); my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(1))); 0; \\ A022544
lista(nn) = select(is, apply(fibonacci, [1..nn])); \\ Michel Marcus, Sep 04 2022
(Python)
from itertools import islice
from sympy import factorint
def A356809_gen(): # generator of terms
a, b = 1, 2
while True:
if any(p&3==3 and e&1 for p, e in factorint(a).items()):
yield a
a, b = b, a+b
A356809_list = list(islice(A356809_gen(), 30)) # Chai Wah Wu, Jan 10 2023
CROSSREFS
Intersection of A000045 and A022544.
Sequence in context: A039595 A033567 A181156 * A162394 A129212 A354850
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Aug 29 2022
STATUS
approved