login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124134
Positive integers n such that Fibonacci(n) = a^2 + b^2, where a, b are integers.
3
1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 35, 37, 38, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 83, 85, 86, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122, 123, 125, 127
OFFSET
1,2
COMMENTS
All odd numbers are in this sequence, since the Fibonacci number with index 2m+1 is the sum of the squares of the two Fibonacci numbers with indices m and m+1. Those with even indices ultimately depend on certain Lucas numbers being the sum of two squares (see A124132). Joint work with Kevin O'Bryant and Dennis Eichhorn.
Numbers n such that Fibonacci(n) or Fibonacci(n)/2 is a square are only 0, 1, 2, 3, 6, 12. So a and b must be distinct and nonzero for all values of this sequence except 1, 2, 3, 6, 12. - Altug Alkan, May 04 2016
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1322 (terms 1..210 from Joerg Arndt)
FORMULA
Intersection of A000045 and A001481.
A000161(A000045(a(n))) > 0. - Reinhard Zumkeller, Oct 10 2013
EXAMPLE
14 is in the sequence because F_14=377=11^2+16^2.
16 is not in the sequence because F_16=987 is congruent to 3 (mod 4).
MATHEMATICA
Select[Range@ 128, SquaresR[2, Fibonacci@ #] > 0 &] (* Michael De Vlieger, May 04 2016 *)
PROG
(PARI) for(n=1, 10^6, t=fibonacci(n); s=sqrtint(t); forstep(i=s, 1, -1, if(issquare(t-i*i), print1(n, ", "); break))) \\ Ralf Stephan, Sep 15 2013
(PARI) is2s(n)={my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1; } \\ see A001481
for(n=1, 10^6, if(is2s(fibonacci(n)), print1(n, ", "))); \\ Joerg Arndt, Sep 15 2013
(Haskell)
a124134 n = a124134_list !! (n-1)
a124134_list = filter ((> 0) . a000161 . a000045) [1..]
-- Reinhard Zumkeller, Oct 10 2013
(Python)
from itertools import count, islice
from sympy import factorint, fibonacci
def A124134_gen(): # generator of terms
return filter(lambda n:n & 1 or all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()), count(1))
A124134_list = list(islice(A124134_gen(), 30)) # Chai Wah Wu, Jun 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Melvin J. Knight (melknightdr(AT)verizon.net), Nov 30 2006
EXTENSIONS
More terms from Ralf Stephan, Sep 15 2013
STATUS
approved