OFFSET
1,1
COMMENTS
Numbers n such that A242480(n) = (1/2*n*(n+1)) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 1.
Conjecture: with number 1 complement of A242483.
Supersequence of primes (A000040).
If there is no odd multiply-perfect number, then:
(1) a(n) = union of odd numbers >= 3 and even numbers from A239719.
(2) a(n) = supersequence of odd numbers (A005408).
LINKS
Jaroslav Krizek, Table of n, a(n) for n = 1..5000
EXAMPLE
6 is in sequence because [(6*(6+1)/2) mod 6 + sigma(6) mod 6 + antisigma(6) mod 6] / 6 = (21 mod 6 + 12 mod 6 + 9 mod 6) / 6 = (3 + 0 + 3 ) / 6 = 1.
PROG
(Magma) [n: n in [1..1000] | n eq ((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n))]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 16 2014
STATUS
approved