login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242482
Numbers n such that A242481(n) = ((n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n) / n = 1.
7
2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55, 56, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 97, 99
OFFSET
1,1
COMMENTS
Numbers n such that A242480(n) = (1/2*n*(n+1)) mod n + sigma(n) mod n + antisigma(n) mod n = (A142150(n) + A054024(n) + A229110(n)) = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) = n. Numbers n such that A242481(n) = (A142150(n) + A054024(n) + A229110(n)) / n = ((A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n)) / n = 1.
Conjecture: with number 1 complement of A242483.
Supersequence of primes (A000040).
If there is no odd multiply-perfect number, then:
(1) a(n) = union of odd numbers >= 3 and even numbers from A239719.
(2) a(n) = supersequence of odd numbers (A005408).
LINKS
EXAMPLE
6 is in sequence because [(6*(6+1)/2) mod 6 + sigma(6) mod 6 + antisigma(6) mod 6] / 6 = (21 mod 6 + 12 mod 6 + 9 mod 6) / 6 = (3 + 0 + 3 ) / 6 = 1.
PROG
(Magma) [n: n in [1..1000] | n eq ((n*(n+1)div 2 mod n + SumOfDivisors(n) mod n + (n*(n+1)div 2-SumOfDivisors(n)) mod n))]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, May 16 2014
STATUS
approved