login
A124137
A signed aerated and skewed version of A038137.
2
1, 0, 1, -1, 0, 2, 0, -2, 0, 3, 1, 0, -5, 0, 5, 0, 3, 0, -10, 0, 8, -1, 0, 9, 0, -20, 0, 13, 0, -4, 0, 22, 0, -38, 0, 21, 1, 0, -14, 0, 51, 0, -71, 0, 34, 0, 5, 0, -40, 0, 111, 0, -130, 0, 55, -1, 0, 20, 0, -105, 0, 233, 0, -235, 0, 89
OFFSET
0,6
FORMULA
T(n,k) = T(n-1,k-1) + T(n-2,k-2) - T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or if n<k . T(n,n) = Fibonacci(n+1) = A000045(n+1).
Sum_{0<=k<=n} x^k*T(n,k)= A014983(n+1), A033999(n), A056594(n), A000012(n), A015518(n+1), A015525(n+1) for x=-2, -1, 0, 1, 2, 3 respectively.
EXAMPLE
Triangle begins:
1;
0, 1;
-1, 0, 2;
0, -2, 0, 3;
1, 0, -5, 0, 5;
0, 3, 0, -10, 0, 8;
-1, 0, 9, 0, -20, 0, 13;
0, -4, 0, 22, 0, -38, 0, 21;
1, 0, -14, 0, 51, 0, -71, 0, 34;
0, 5, 0, -40, 0, 111, 0, -130, 0, 55;
MATHEMATICA
T[0, 0]:= 1; T[n_, n_]:= Fibonacci[n + 1]; T[n_, k_]:= T[n, k] = If[k < 0 || n < k, 0, T[n - 1, k - 1] + T[n - 2, k - 2] - T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 27 2018 *)
PROG
(PARI) {T(n, k) = if(n==0 && k==0, 1, if(k==n, fibonacci(n+1), if(k<0 || n<k, 0, T(n-1, k-1) + T(n-2, k-2) - T(n-2, k))))};
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, May 27 2018
KEYWORD
sign,tabl
AUTHOR
Philippe Deléham, Nov 30 2006
EXTENSIONS
Corrected and extended by Philippe Deléham, Apr 05 2012
STATUS
approved