login
A302643
Number of partitions of n into two parts such that the positive difference of the parts is a squarefree semiprime.
2
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 1, 3, 1, 3, 1, 3, 2, 4, 2, 4, 2, 5, 2, 5, 2, 5, 2, 5, 3, 6, 4, 6, 4, 7, 5, 7, 5, 7, 5, 7, 5, 8, 5, 8, 5, 8, 6, 8, 6, 8, 7, 8, 8, 9, 8, 9, 8, 10, 8, 10, 9, 10, 9, 10, 10, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11
OFFSET
1,12
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} A280710(n-2i).
EXAMPLE
As 6 is a semiprime, we know that a(6 + 2*k) > 0 for k > 0.
MATHEMATICA
Table[Sum[MoebiusMu[n - 2 i]^2*KroneckerDelta[PrimeOmega[n - 2 i], 2], {i, Floor[(n - 1)/2]}], {n, 100}]
PROG
(PARI) a(n) = sum(i=1, (n-1)\2, bigomega(n-2*i)==2*issquarefree(n-2*i)); \\ Michel Marcus, Apr 11 2018
(PARI) upto(n) = {my(semiprimes = List(), res = vector(n)); forprime(p = 2, sqrtint(n), forprime(q = p+1, n \ p, listput(semiprimes, p * q))); for(i = 1, #semiprimes, forstep(j = semiprimes[i] + 2, n, 2, res[j]++)); res} \\ David A. Corneth, Apr 11 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 10 2018
STATUS
approved