|
|
A179436
|
|
a(n) = (3*n+7)*(3*n+2)/2.
|
|
2
|
|
|
7, 25, 52, 88, 133, 187, 250, 322, 403, 493, 592, 700, 817, 943, 1078, 1222, 1375, 1537, 1708, 1888, 2077, 2275, 2482, 2698, 2923, 3157, 3400, 3652, 3913, 4183, 4462, 4750, 5047, 5353, 5668, 5992, 6325, 6667, 7018, 7378, 7747, 8125, 8512, 8908, 9313, 9727, 10150
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (-7-4*x+2*x^2)/(x-1)^3.
a(n) = a(n-1)+9*(n+1) = (14+27*n+9*n^2)/2.
a(n) = 2*a(n-1)-a(n-2) +9.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
Sum_{n>=0} 1/a(n) = 1/2-2*Pi*sqrt(3)/45 = 0.2581600... - R. J. Mathar, Apr 07 2011
Sum_{n>=0} (-1)^n/a(n) = 3/10 - 4*log(2)/15. - Amiram Eldar, Mar 27 2022
|
|
MAPLE
|
|
|
MATHEMATICA
|
a[n_] := (3*n + 7)*(3*n + 2)/2; Array[a, 50, 0] (* Amiram Eldar, Mar 27 2022 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|