login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A139267
Twice octagonal numbers: 2*n*(3*n-2).
12
0, 2, 16, 42, 80, 130, 192, 266, 352, 450, 560, 682, 816, 962, 1120, 1290, 1472, 1666, 1872, 2090, 2320, 2562, 2816, 3082, 3360, 3650, 3952, 4266, 4592, 4930, 5280, 5642, 6016, 6402, 6800, 7210, 7632, 8066, 8512, 8970, 9440, 9922
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 2,..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033580 in the same spiral. - Omar E. Pol, Sep 09 2011
FORMULA
a(n) = 2*A000567(n) = 6*n^2 - 4*n = 2*n*(3*n - 2).
a(n) = a(n-1) + 12*n - 10, with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(2+10*x)/(1-3*x+3*x^2-x^3). - Colin Barker, Jan 06 2012
After 0, a(n) = Sum_{i=0..n-1} (12*i + 2). - Bruno Berselli, Sep 11 2013
E.g.f.: 2*x*(1 + 3*x)*exp(x). - G. C. Greubel, Sep 18 2019
MAPLE
seq(2*n*(3*n-2), n=0..50); # G. C. Greubel, Sep 18 2019
MATHEMATICA
Table[2*n*(3*n-2), {n, 0, 50}] (* G. C. Greubel, Jun 07 2017 *)
PROG
(PARI) a(n)=2*n*(3*n-2) \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [2*n*(3*n-2): n in [0..50]]; // G. C. Greubel, Sep 18 2019
(Sage) [2*n*(3*n-2) for n in (0..50)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..50], n-> 2*n*(3*n-2)); # G. C. Greubel, Sep 18 2019
CROSSREFS
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=12).
Sequence in context: A034507 A211620 A023638 * A254855 A181340 A275032
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, May 14 2008, May 19 2008
STATUS
approved