The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181617 Molecular topological indices of the complete graph K_n. 7
 0, 4, 24, 72, 160, 300, 504, 784, 1152, 1620, 2200, 2904, 3744, 4732, 5880, 7200, 8704, 10404, 12312, 14440, 16800, 19404, 22264, 25392, 28800, 32500, 36504, 40824, 45472, 50460, 55800, 61504, 67584, 74052, 80920, 88200, 95904, 104044, 112632, 121680, 131200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = the area of a trapezoid with vertices at (n-1,n), (n,n-1), ((n-1)^2,n^2), and (n^2,(n-1)^2). - J. M. Bergot, Mar 23 2014 For n > 3, also the detour index of the (n-1)-helm graph. - Eric W. Weisstein, Dec 16 2017 a(n-3) is the maximum sigma irregularity over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars (K_2 joined to n-2 independent vertices). (The sigma irregularity of a graph is the sum of the squares of the differences between the degrees over all edges of the graph.) - Allan Bickle, Jun 14 2023 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87. Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5. Eric Weisstein's World of Mathematics, Complete Graph. Eric Weisstein's World of Mathematics, Detour Index. Eric Weisstein's World of Mathematics, Helm Graph. Eric Weisstein's World of Mathematics, Molecular Topological Index. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 2*n*(n-1)^2. a(n) = 4*A002411(n). G.f.: 4*x^2*(1+2*x)/(1-x)^4. - Colin Barker, Nov 04 2012 From Amiram Eldar, Jan 22 2023: (Start) Sum_{n>=2} 1/a(n) = Pi^2/12 - 1/2. Sum_{n>=2} (-1)^n/a(n) = Pi^2/24 - log(2) + 1/2. (End) MATHEMATICA CoefficientList[Series[4 x (1 + 2 x)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 24 2014 *) LinearRecurrence[{4, -6, 4, -1}, {0, 4, 24, 72}, 50] (* Harvey P. Dale, Jun 16 2016 *) Table[2 n (n - 1)^2, {n, 20}] (* Eric W. Weisstein, Dec 16 2017 *) PROG (PARI) a(n) = 2*n*(n-1)^2; \\ Joerg Arndt, Mar 24 2014 (Magma) [2*n*(n-1)^2: n in [1..50]]; // Vincenzo Librandi, Mar 24 2014 CROSSREFS Cf. A002411. Cf. A011379, A181617, A270205 (sigma irregularities of maximal k-degenerate graphs). Sequence in context: A212066 A336039 A364600 * A261256 A011915 A199904 Adjacent sequences: A181614 A181615 A181616 * A181618 A181619 A181620 KEYWORD nonn,easy,changed AUTHOR Eric W. Weisstein, Jul 10 2011 EXTENSIONS More terms from Joerg Arndt, Mar 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 23 06:27 EST 2024. Contains 370267 sequences. (Running on oeis4.)