|
|
A270205
|
|
Number of 2 X 2 planar subsets in an n X n X n cube.
|
|
3
|
|
|
0, 0, 6, 36, 108, 240, 450, 756, 1176, 1728, 2430, 3300, 4356, 5616, 7098, 8820, 10800, 13056, 15606, 18468, 21660, 25200, 29106, 33396, 38088, 43200, 48750, 54756, 61236, 68208, 75690, 83700, 92256
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
William H. Press looked at the hybrid structure of a most-perfect magic square and the Hilbert space filling curve and thought it might be the "most uniform" way of putting the consecutive integers in a 2-d square. He thought a definition of "most uniform" would be useful.
Al Zimmermann suggested this: Start by defining the "non-uniformity of a distribution of integers among the cells of a square [or cube or hypercube]" to be the standard deviation of the sums of the 2 X 2 planar subsets. Then define a "most uniform distribution of integers" to be a distribution with the smallest non-uniformity. For both the most-perfect square and most-perfect cube the non-uniformity is 0 and so each is a most uniform distribution. (Of course, you'd want a better word for "non-uniformity". Skewness?) Perhaps use "2 X 2 planar subset" instead of "2 X 2 partition"?
Comment from Dwane Campbell: For cubes, the definition of compact is that all 2 X 2 X 2 subcubes add to the same sum. That definition also includes wrap around. Your most perfect space cube is compact. It has the additional constraint that each orthogonal plane is also compact. There are 64 2 X 2 X 2 subcubes that add to 260 and 192 2 X 2 subsquares that add to 130 in your cube. I did not think either result was possible. Congratulations!
The most-perfect order 4 cube and the reversible order 4 cube are the new findings to look at in the link section.
Most-perfect magic squares require every 2 X 2 cell block to have the same sum. This sequence looks at that same subset in the cube.
Most-perfect space is defined as a structure where all these 2 X 2 subsets have the same sum.
What structure provides the most uniform distribution of integers in a cube?
a(n+1) is the number of unit faces required to make an n X n X n cubic lattice. Number of unit edges required for the same is A059986(n). - Mohammed Yaseen, Aug 22 2021
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 3*n^3 - 6*n^2 + 3*n.
G.f.: 6*x^2*(1+2*x)/(x-1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. (End)
|
|
EXAMPLE
|
The 2 X 2 X 2 cube labeled with the integers 1 to 8 has the following six 2 X 2 planar subsets each containing 4 cells: 1,2,3,4; 5,6,7,8; 1,2,5,6; 3,4,7,8; 1,4,5,8; 2,3,6,7.
|
|
MAPLE
|
|
|
MATHEMATICA
|
CoefficientList[Series[(6 (x^2 + 2 x^3))/(-1 + x)^4, {x, 0, 32}], x] (* Michael De Vlieger, Mar 15 2016 *)
|
|
PROG
|
(PARI) concat([0, 0], Vec(6*x^2*(1+2*x)/(x-1)^4 + O(x^100))) \\ Altug Alkan, Mar 14 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|