4x4x4 Cube 5-11-2016

- a) 2x2 planar subsets
 - 1) Most-Perfect Cube
 - 2) Reversible Cube
 - a) Additional constraints pairs symmetrically opposite on the same row/col/pilar have the same sum.
- b) 2x2x2 sub cube partitions (partitions do not overlap)
 - 1) polarization of the 8 sub cubes to align with the 4x4x4 cube
- c) Magic Cube Criteria row/col/pilar/triagonal lines
- d) Blending of the criteria above ...

Example: Reversible Most-Perfect Square

Most-Perfect Space

all 2x2 planar partitions have the same sum

* Values that are 8 spaces apart on the Hilbert curve through this cube sum to 260

Magic Cube Conditions 4x4x4		
Magic Lube Conditions: C-130 n01+n02+n03+n04+C & n01+n17+n33+n49+C & n01+n05+n09+n13+C & n05+n06+n07+n08+C & n02+n17+n33+n49+C & n01+n05+n09+n13+C & n09+n10+n11+n12+C & n02+n12+n35+n51+C & n03+n07+n11+n15+C & n13+n14+n15+n12+C & n05+n21+n35+n51+C & n13+n2+n115+C & n13+n14+n13+n12+C & n05+n21+n37+n53+C & n17+n21+n25+n29+C & n21+n22+n23+n24+C & n05+n21+n37+n53+C & n17+n21+n25+n29+C & n25+n26+n27+n28+C & n05+n21+n37+n55+C & n19+n22+n26+n39+C & n25+n26+n27+n28+C & n05+n21+n37+n55+C & n19+n22+n26+n39+C & n35+n36+n27+n28+C & n05+n21+n55+n55+C & n35+n37+n31+n45+C & n37+n38+n39+n46+C & n11+n27+n43+n56+C & n35+n39+n43+n47+C & n41+n42+n33+n46+C & n11+n27+n43+n56+C & n36+n39+n43+n47+C & n45+n56+n51+n52+C & n12+n28+n44+n60+C & n36+n39+n38+n27+C & 1 n57+n58+n59+n66+C & n11+n27+n43+n53+C & n36+n39+n38+n27+C & 1 n57+n58+n59+n66+C & n11+n27+n43+n53+C & n36+n39+n38+n27+C & 1 n57+n58+n59+n66+C & n11+n27+n43+n63+C & n10+n53+n59+n63+C & 8 n57+n58+n59+n66+C & n11+n27+n43+n63+C & n21+n58+n59+n68+C & 8 n57+n58+n59+n66+C & n11+n27+n43+n63+C & n21+n58+n59+n68+C & 8 n57+n58+n59+n66+C & n11+n27+n43+n63+C & n21+n58+n58+n63+C & 8 n57+n58+n59+n66+C & n11+n27+n43+n63+C & n21+n58+n58+n58+n63+C & 8 n53+n58+n59+n66+C & n11+n27+n43+n63+C & n10+n57+n58+n63+C & 8 n53+n58+n59+n66+C & n11+n27+n43+n63+C & n10+n53+n58+n63+C & 8 n53+n58+n59+n66+C & n11+n27+n43+n63+C & n21+n38+n63+C & 8 n53+n58+n59+n65+C & n11+n52+n31+n43+n63+C & n21+n38+n58+n62+C & 8 n53+n58+n58+n53+n51+n52+n53+n53+n53+n53+n53+n53+n53+n53+n53+n53	//* Fan-Triagonal Conditions: C=130 * n01+n22+n43+n564C & n01+n24+n43+n54CC & n01+n30+n43+n564C & n01+n24+n43+n54C & n02+n23+n44+n514C & n02+n21+n44+n534C & n03+n24+n41+n54C & n03+n22+n1+n64+CC & n03+n24+n41+n54C & n03+n32+n1+n564C & n04+n21+n42+n554C & n04+n31+n42+n534C & n04+n21+n42+n554C & n04+n31+n42+n534C & n04+n21+n42+n554C & n05+n28+n42+n51+CC & n05+n26+n47+n554C & n05+n28+n47+n504C & n05+n26+n47+n554C & n05+n28+n47+n504C & n05+n26+n47+n554C & n05+n28+n47+n564C & n05+n26+n47+n554C & n05+n28+n47+n564C & n05+n26+n45+n554C & n05+n26+n47+n564C & n07+n28+n45+n554C & n05+n26+n45+n564C & n07+n28+n45+n554C & n05+n26+n45+n564C & n07+n28+n554C & n05+n27+n46+n45+C & n08+n27+n46+n554C & n05+n27+n46+n45+C & n08+n27+n46+n554C & n05+n27+n46+n45+C & n08+n27+n35+n564C & n09+n27+n56+n554C & n08+n27+n35+n564C & n09+n27+n56+n554C & n08+n27+n35+n564C & n09+n27+n35+n564C & n08+n27+n35+n564C & n09+n27+n35+n564C & n10+n23+n354C & n11+n26+n35+n56C & n11+n24+n33+n564C & n11+n26+n35+n56C & n11+n24+n33+n564C & n11+n26+n35+n564C & n12+n23+n354C & n11+n26+n35+n564C & n11+n24+n33+n564C & n11+n26+n35+n564C & n11+n26+n33+n564C & n11+n26+n35+n564C & n11+n26+n33+n564C & n11+n26+n35+n564C & n11+n26+n33+n564C & n11+n26+n35+n564C & n11+n26+n33+n564C & n11+n26+n35+n564C & n11+n	n06 < n17 n06 < n02 n06 < n08 n06 < n05 n06 < n01 n06 < n21 n06 < n22 // sym red n02 > n05 n05 > n22 n38 < n34 n38 < n33 n38 < n54 //sym red n34 < n57 n34 < n57 n37 > n54
n25+n40=65 & n26+n39=65 & n27+n38=65 & n28+n37=65 & n29+n36=65 & n30+n35=65 & n31+n34=65 & n32+n33=65 & n33+n32=65 & n34+n31=65 & n35+n30=65 & n36+n29=65 & n32+n28=65 & n34+n27=65 & n35+n20+n26=65 & n36+n29=65 &	n13+n18+n39+n60=C & n13+n20+n39+n58=C & n13+n26+n39+n52=C & n13+n28+n39+n50=C & n14+n19+n40+n57=C & n14+n17+n40+n59=C & n14+n27+n40+n51=C & n14+n25+n40+n51=C &	
s n40+n25=05 & n38+n2/=05 & n39+n2b=05 & n40+n25=05 &	n15+n20+n3+n50=C ± n15+n12+n50+n50=C ± n15+n20+n37+n50=C ± n15+n126+n37+n50=C ± n16+n17+n38+n59=C ± n16+n19+n38+n57=C ± n16+n25+n38+n51=C ± n16+n27+n38+n59=C ±	

r			
	2x2x2 sub cube	polarization]
n06 < n17 &	n08 < n04 &	n14 < n10 &	n16 < n12 &
n06 < n02 &	n08 < n07 &	n14 < n13 &	n16 < n15 &
n06 < n18 &	n08 < n03 &	n14 < n09 &	n16 < n11 &
n06 < n05 &	n08 < n19 &	n14 < n25 &	n16 < n27 &
n06 < n01 &	n08 < n20 &	n14 < n26 &	n16 < n28 &
n06 < n21 &	n08 < n23 &	n14 < n29 &	n16 < n31 &
n06 < n22 &	n08 < n24 &	n14 < n30 &	n16 < n32 &
// sym red	//sym red	// sym red	// sum red
n02 > n05 &	n04 > n07 &	n10 > n13 &	n12 > n15 &
n05 > n22 &	n07 > n24 &	n13 > n30 &	n15 > n32 &
n38 < n34 &	n40 < n36 &	n46 < n42 &	n48 < n44 &
n38 < n37 &	n40 < n39 &	n46 < n45 &	n48 < n47 &
n38 < n33 &	n40 < n35 &	n46 < n41 &	n48 < n43 &
n38 < n49 &	n40 < n51 &	n46 < n57 &	n48 < n59 &
n38 < n50 &	n40 < n52 &	n46 < n58 &	n48 < n60 &
n38 < n53 &	n40 < n55 &	n46 < n61 &	n48 < n63 &
n38 < n54 &	n40 < n56 &	n46 < n62 &	n48 < n64 &
//sym red	// sym red	//sym red	// sym red
n34 > n37 &	n36 > n39 &	n42 > n45 &	n44 > n47 &
n37 > n54 &	n39 > n56 &	n45 > n62 &	n47 > n64 &
			(

all 108 2x2 planar subset diagonals have the same sum though those sums may differ

all 8 2x2x2 subcube partitions have the same orientation

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
626364 57 58 59 60 29 54 30 55 31 56 32	61626364 57 58 59 60	61626364 57 58 59 60

 $\begin{vmatrix} 57 & |58 & |59 & |60 \\ 45 & 53 & 46 & 54 & 47 & 55 & 48 & 56 \\ |41 & 49-- & 42--50---43--51---44--52 \\ 29 & 37 & | & 30 & 38 & | & 31 & 39 & | & 32 & 40 & | \\ |25 & 33 & | & 26 & 34 & | & 27 & 35 & |28 & 36 \\ 13--21-|--14---22|-15--23-|-16 & 24 & | \\ 9 & 17 & 10 & 18 & 11 & 19 & 12 & 20 \\ 5 & | & 6 & | & 7 & | & 8 & | \\ 1-----2 & ----3 & -----4 & 4 \\ \end{vmatrix}$

1----- 2----- 3------ 4

31--|29 27 |25 23 |21 19--17

47--|49 43 |4 39 |3 35-3

55-|5 51 |4 39 |3 35-

59 51 43 |-35

61 53

Polarized Reversible Cubes

108–2x2 planar subsets all sum to	130 for the Most-Perfect Cube	
// $2x2$ cell blocks on the x, y plane	// 2x2 cell blocks on the $x,z\ {\tt plane}$	// $2x2$ cell blocks on the y,z plar
n01 + n17 + n02 + n18 = C €	n01 + n02 + n05 + n06 = C &	n01 + n17 + n05 + n21 = C &
n17 + n33 + n18 + n34 = C &	n17 + n18 + n21 + n22 = C &	$n02 + n18 + n06 + n22 = C \epsilon$
133 + n49 + n34 + n50 = C &	n33 + n34 + n37 + n38 = C &	$n03 + n19 + n07 + n23 = C \epsilon$
	n49 + n50 + n53 + n54 = C &	$n04 + n20 + n08 + n24 = C \epsilon$
n02 + n18 + n03 + n19 = C &		
118 + n19 + n34 + n35 = C &	n02 + n03 + n06 + n07 = C &	n17 + n33 + n21 + n37 = C + n37
n34 + n35 + n50 + n51 = C &	$n18 + n19 + n22 + n23 = C \epsilon$	n18 + n34 + n22 + n38 = C + n38
	$n34 + n35 + n38 + n39 = C \epsilon$	n10 + n34 + n22 + n30 = 0 e
n03 + n04 + n19 + n20 = C &	$n50 + n51 + n54 + n55 = C \epsilon$	n15 + n35 + n23 + n35 = C =
n19 + n20 + n35 + n36 = C &		1120 + 1130 + 1124 + 1140 = 0
$n35 + n36 + n51 + n52 = C \epsilon$	n03 + n04 + n07 + n08 = C =	
	n00 + n04 + n07 + n00 = 0.4	133 + 149 + 137 + 153 = C
$n05 + n06 + n21 + n22 = C \epsilon$	$n_{12} + n_{20} + n_{20} + n_{24} - C =$	134 + 150 + 136 + 154 = C
$n^{21} + n^{22} + n^{37} + n^{38} = 0.4$	$n_{33} + n_{30} + n_{35} + n_{40} - C \approx$	$n_{35} + n_{51} + n_{39} + n_{55} = 0.6$
$n37 + n38 + n53 + n54 = C \epsilon$	1151 + 1152 + 1155 + 1156 - C &	$n_{36} + n_{52} + n_{40} + n_{56} = C \epsilon$
n06 + n07 + n22 + n23 = C &	$n05 + n06 + n09 + n10 = C \epsilon$	$n05 \pm n21 \pm n09 \pm n25 = 0$
n22 + n23 + n38 + n39 = C &	$n^{21} + n^{22} + n^{25} + n^{26} = C \epsilon$	n05 + n21 + n05 + n25 = C = 0
n38 + n39 + n54 + n55 = C &	n37 + n38 + n41 + n42 = C =	$100 + 122 + 110 + 120 - C \approx$
	n57 + n55 + n57 + n58 = C =	n07 + n23 + n11 + n27 = C c
n07 + n08 + n23 + n24 = C &		100 + 124 + 112 + 120 = C a
$n_{23} + n_{24} + n_{39} + n_{40} = C \epsilon$	$p06 \pm p07 \pm p10 \pm p11 = 0$	-21222541 - 0 -
$n_{39} + n_{40} + n_{55} + n_{56} = C \epsilon$	n00 + n07 + n10 + n11 = 0 a	$n_{21} + n_{37} + n_{25} + n_{41} = 0$
	n22 + n23 + n20 + n42 + n43 = 0	$n22 + n38 + n26 + n42 = C \epsilon$
$n09 + n10 + n25 + n26 = C \approx$	n50 + n55 + n52 + n50 - C =	$n_{23} + n_{39} + n_{27} + n_{43} = C_{6}$
$n^{25} + n^{26} + n^{41} + n^{42} = C \epsilon$	1134 + 1135 + 1136 + 1135 = C &	n24 + n40 + n28 + n44 = C a
h^{12} + h^{12} + h^{12} + h^{12} + h^{12} = 0 4	p07 + p09 + p11 + p12 = 0	
	$n07 + n00 + n11 + n12 = C \approx$	$n_3 / + n_{53} + n_{41} + n_{57} = C \epsilon$
10 + n11 + n26 + n27 = C =	$n_{23} + n_{24} + n_{27} + n_{26} - C_{44}$	$n_{38} + n_{54} + n_{42} + n_{58} = C \epsilon$
$n_{26} + n_{27} + n_{42} + n_{43} = 0$	1159 + 1140 + 1145 + 1144 = C = 0	$n39 + n55 + n43 + n59 = C \epsilon$
h^{2} + h^{2} + h^{2} + h^{2} + h^{2} = C a	1133 + 1136 + 1139 + 1160 = C &	$n40 + n56 + n44 + n60 = C \epsilon$
142 1145 1156 1155 - 6 8		
$11 + n12 + n27 + n28 = C \epsilon$	$p_{00} + p_{10} + p_{13} + p_{14} = 0$	
$n^{27} + n^{28} + n^{43} + n^{44} = C \epsilon$	$n_{00} + n_{10} + n_{10} + n_{14} - C \approx$	-00051000 - 0 -
43 + n44 + n59 + n60 = C =	$n_{23} + n_{20} + n_{25} + n_{30} - C \approx$	$n09 + n25 + n13 + n29 = C \epsilon$
145 - 1144 - 1155 - 1166 - 6 &	n41 + n42 + n43 + n46 = C	$n10 + n26 + n14 + n30 = C \epsilon$
$13 \pm n14 \pm n29 \pm n30 = 0$	$n_{57} + n_{56} + n_{61} + n_{62} = C $	$n11 + n27 + n15 + n31 = C \epsilon$
113 + 114 + 125 + 130 = 0 e		$n12 + n28 + n16 + n32 = C \epsilon$
$129 + 1130 + 1143 + 1140 = C \approx$	$n10 + n11 + n14 + n15 = C \epsilon$	
145 + 1146 + 1161 + 1162 = C &	$n26 + n27 + n30 + n31 = C \epsilon$	n25 + n41 + n29 + n45 = C &
14 + -15 + -20 + -21 - 0 -	$n42 + n43 + n46 + n47 = C \epsilon$	$n26 + n42 + n30 + n46 = C \epsilon$
114 + 115 + 150 + 151 = 0.6	$n58 + n59 + n62 + n63 = C \epsilon$	n27 + n43 + n31 + n47 = C &
130 + 131 + 146 + 147 = C		n28 + n44 + n32 + n48 = C &
146 + n47 + n62 + n63 = C a	$n11 + n12 + n15 + n16 = C \epsilon$	
	$n27 + n28 + n31 + n32 = C \epsilon$	n41 + n57 + n45 + n61 = C &
$n15 + n16 + n31 + n32 = C \epsilon$	$n43 + n44 + n47 + n48 = C \epsilon$	n42 + n58 + n46 + n62 = C &
$n31 + n32 + n47 + n48 = C \epsilon$	n59 + n60 + n63 + n64 = C &	n43 + n59 + n47 + n63 = C &
147 + 148 + 163 + 164 = C =		

