a) 2×2 planar subsets

1) Most-Perfect Cube
2) Reversible Cube
a) Additional constraints - pairs symmetrically opposite on the same row/col/pilar have the same sum.
b) $2 \times 2 \times 2$ sub cube partitions (partitions do not overlap)
3) polarization of the 8 sub cubes to align with the $4 \times 4 \times 4$ cube
c) Magic Cube Criteria - row/col/pilar/triagonal lines
d) Blending of the criteria above ...

Example: Reversible Most-Perfect Square

Most-Perfect Space

```
all 2x2 planar partitions have the same sum
```


all 1082×2 partitions in this $4 \times 4 \times 4$ cube sum to 130

Reversible Cube :

3 https://oeis.org/A270205

How many diagonally opposite pairs have the same sum in this cube?

Example: * $1+4=2+3$

* $1+48=10+39$
* $1+64=10+55$

Polarized Reversible Cubes

47--------48-------63-------64
$\begin{array}{llllllll}43 & 15 & 44 & 16 & 59 & 31 & 60 & 32\end{array}$
|41 13-- 42--14----57--29----58--30
$\begin{array}{llllllllll}39 & 11 & 40 & 12 & 55 & 27 & 56 & 28 & \mid\end{array}$

| $\mid 37$ | 9 | \mid | 38 | 10 | \mid | 53 | 25 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: |$| 54 \quad 26$

$\begin{array}{lllllll}33 & 5 & 34 & 6 & 49 & 21 & 50 \\ 3 & & 4 & 22\end{array}$
1-------- 2-------------17---18

$\mid 53$	$\mid 54$	$\mid 61$	$\mid 62$	
51	23	52	24	59

|49 21-- $50--22---57--29---58--30$ $\begin{array}{llllllllll}39 & 19 & 40 & 20 & 47 & 27 & 48 & 28 & \mid\end{array}$ \begin{tabular}{|lll|ll|ll|ll}
$\mid 37$ \& 17 \& \mid \& 38 \& 18 \& 45 \& 25 \& $\mid 46$ \& 26

 35-- 7-|--36--- 8|--43--15-|--44 16 |

33 \& 5 \& 34 \& 6 \& 41 \& 13 \& 42 \& 14

3 \& \mid \& 4 \& 11 \& 12
\end{tabular}$|$

31--------32-------63--------64						
$\mid 29$	30	\|61	162			
$27 \quad 23$	$28 \quad 24$	5955	6056			
\|25 21-- 26--22----57--53----58--54						
$\left.\begin{array}{cc\|cc\|} 15 & 19 & \mid & 16 \\ \mid 13 & 17 & \mid & 20 \end{array} \right\rvert\,$		$47 \quad 51$	$48 \quad 52$			
		45	$\mid 4650$			
11--7-\|--12--- 8	--43--39-	--44 40				
9	10		$42 \quad 38$			
3	4	35	36			
			-34			

$$
\text { 59--------60------------63 } 64
$$

$$
\begin{array}{cccccc}
\mid 57 & & 158 & 161 & 162 \\
51 & 43 & 52 & 44 & 55 & 47 \\
56 & 48
\end{array}
$$

$$
\mid 49 \quad 41--\quad 50--42---53--45---54--46
$$ $43 \quad 51 \quad 44 \quad 52 \quad 47 \quad 55 \quad 48 \quad 56$

$$
2735|2836| 3139|3240|
$$ $\mid 41$ 49-- $42--50---45--53---46--54$

$$
\begin{array}{llllllllll}
27 & 35 & 28 & 36 & 31 & 39 & 32 & 32 & 40 & \mid \\
\mid 25 & 33 & \mid & 26 & 34 & \mid & 29 & 37 & \mid 30 & 38
\end{array}
$$

$$
\begin{array}{|lr|rr|rrrr}
\mid 25 & 33 & \mid 26 & 34 & 29 & 37 & \mid 30 & 38 \\
19--11-|--20---12|--23--15-\mid- & -24 & 16
\end{array}
$$

 11--19-|--12---20|--15--23-|--16 24 |

917	10	18	13		1	14		2
3 \|		41		7				8

61-------62--------63-------64			
\| 57	\| 58	\| 59	160
$45 \quad 53$	$46 \quad 54$	4755	485
$\mid 41$ 49-- 42--50----43--51----44--52			
$\left.\begin{array}{cc} 29 & 37 \end{array} \right\rvert\,$	3038	31391	3240
	26	2735	$\mid 28$
13--21-	-14---22	-15--23-\|	16
91	10	$11 \quad 19$	12
5	6	7	

Polarized Reversible Cube

All 1082×2 planar subset diagonals have the same sum though those sums may differ.

All $82 \times 2 \times 2$ subcube partitions have the same orientation as the entire cube.


```
// 2x2 cell blocks on the x,y plane // 2x2 cell blocks on the x,z plane
n01 + n17 + n02 + n18 = C &
n17 + n33+n18 + n34 = C %
n33+n49+n34+n50=C&
n02 + n18 + n03 + n19 = C &
n18 + n19 + n34 + n35 = C &
n34 + n35 + n50 + n51 = C&
n03 + n04 + n19 + n20 = C %
n19 + n20 + n35 + n36 = C &
n35 + n36 + n51 + n52 = C &
n}05+\textrm{n}06+\textrm{n}21+\textrm{n}22=\textrm{C}
n21 + n22 + n37 + n38 = C &
n37 + n38 + n53 + n54 = C &
n06 + n07 + n22 + n23 = C &
n22 + n23 + n38 + n39 = C &
n38 + n39 + n54 + n55 = C &
n07 + n08 + n23 + n24 = C &
n23 + n24 + n39 + n40 = C &
n}39+n40+n55+n56=C&
n09 + n10 + n25 + n26 = C &
n25 + n26 + n41 + n42 = C %
n41 + n42 + n57 + n58 = C&
n10 + n11 + n26 + n27 = C &
n26 + n27 + n42 + n43 = C &
n42 + n43 + n58 + n59 = C &
n11 + n12 + n27 + n28 = C &
n27 + n28 + n43 + n44 = C&
n43 + n44 + n59 + n60 = C &
n13 + n14 + n29 + n30 = C %
n29 + n30 + n45 + n46 = C %
n45+n46+n61 + n62 = C %
n14 + n15 + n30 + n31 = C &
n30+n31 + n46 + n47 = C &
n46 + n47 + n62 + n63 = C &
n15 + n16 + n31 + n32 = C &
n31 + n32 + n47 + n48 = C &
n47 + n48 + n63 + n64 = C &
n11+n12+n27+n28=C C
```

// 2×2 cell blocks on the x, z plane
$\mathrm{n} 01+\mathrm{n} 02+\mathrm{n} 05+\mathrm{n} 06=\mathrm{C}$ \&
$\mathrm{n} 17+\mathrm{n} 18+\mathrm{n} 21+\mathrm{n} 22=\mathrm{C}$ \&
n33 + n34 + n37 + n38 = C
$\mathrm{n} 49+\mathrm{n} 50+\mathrm{n} 53+\mathrm{n} 54=\mathrm{C} \&$
$\mathrm{n} 02+\mathrm{n} 03+\mathrm{n} 06+\mathrm{n} 07=\mathrm{C}$ \&
$\mathrm{n} 18+\mathrm{n} 19+\mathrm{n} 22+\mathrm{n} 23=\mathrm{C}$ \&
$\mathrm{n} 34+\mathrm{n} 35+\mathrm{n} 38+\mathrm{n} 39=\mathrm{C}$:
$\mathrm{n} 50+\mathrm{n} 51+\mathrm{n} 54+\mathrm{n} 55=\mathrm{C} \&$
$\mathrm{n} 03+\mathrm{n} 04+\mathrm{n} 07+\mathrm{n} 08=\mathrm{C} \&$
$\mathrm{n} 19+\mathrm{n} 20+\mathrm{n} 23+\mathrm{n} 24=\mathrm{C}$ \&
$\mathrm{n} 35+\mathrm{n} 36+\mathrm{n} 39+\mathrm{n} 40=\mathrm{C} \approx$
$\mathrm{n} 51+\mathrm{n} 52+\mathrm{n} 55+\mathrm{n} 56=\mathrm{C}$ \&
$\mathrm{n} 05+\mathrm{n} 06+\mathrm{n} 09+\mathrm{n} 10=\mathrm{C} \&$
$\mathrm{n} 21+\mathrm{n} 22+\mathrm{n} 25+\mathrm{n} 26=\mathrm{C} £$
$\mathrm{n} 37+\mathrm{n} 38+\mathrm{n} 41+\mathrm{n} 42=\mathrm{C}$ \&
$\mathrm{n} 53+\mathrm{n} 54+\mathrm{n} 57+\mathrm{n} 58=\mathrm{C} \&$
$\mathrm{n} 06+\mathrm{n} 07+\mathrm{n} 10+\mathrm{n} 11=\mathrm{C}$ \&
$\mathrm{n} 22+\mathrm{n} 23+\mathrm{n} 26+\mathrm{n} 27=\mathrm{C} \&$
$\mathrm{n} 38+\mathrm{n} 39+\mathrm{n} 42+\mathrm{n} 43=\mathrm{C} \&$
$\mathrm{n} 54+\mathrm{n} 55+\mathrm{n} 58+\mathrm{n} 59=\mathrm{C}$ \&
$\mathrm{n} 07+\mathrm{n} 08+\mathrm{n} 11+\mathrm{n} 12=\mathrm{C}$:
$\mathrm{n} 23+\mathrm{n} 24+\mathrm{n} 27+\mathrm{n} 28=\mathrm{C}$ \&
$\mathrm{n} 39+\mathrm{n} 40+\mathrm{n} 43+\mathrm{n} 44=\mathrm{C}$ \&
$\mathrm{n} 55+\mathrm{n} 56+\mathrm{n} 59+\mathrm{n} 60=\mathrm{C} \&$
$\mathrm{n} 09+\mathrm{n} 10+\mathrm{n} 13+\mathrm{n} 14=\mathrm{C}$ \&
$\mathrm{n} 25+\mathrm{n} 26+\mathrm{n} 29+\mathrm{n} 30=\mathrm{C}$ \&
$\mathrm{n} 41+\mathrm{n} 42+\mathrm{n} 45+\mathrm{n} 46=\mathrm{C}$ \&
$\mathrm{n} 57+\mathrm{n} 58+\mathrm{n} 61+\mathrm{n} 62=\mathrm{C}$ \&
$\mathrm{n} 10+\mathrm{n} 11+\mathrm{n} 14+\mathrm{n} 15=\mathrm{C}$:
$\mathrm{n} 26+\mathrm{n} 27+\mathrm{n} 30+\mathrm{n} 31=\mathrm{C}$ \&
$\mathrm{n} 42+\mathrm{n} 43+\mathrm{n} 46+\mathrm{n} 47=\mathrm{C}$:
$\mathrm{n} 58+\mathrm{n} 59+\mathrm{n} 62+\mathrm{n} 63=\mathrm{C} \&$
$\mathrm{n} 11+\mathrm{n} 12+\mathrm{n} 15+\mathrm{n} 16=\mathrm{C}$ \&
n27 + n28 + n31 + n32 $=C \&$
$\mathrm{n} 43+\mathrm{n} 44+\mathrm{n} 47+\mathrm{n} 48=\mathrm{C}=$
$\mathrm{n} 59+\mathrm{n} 60+\mathrm{n} 63+\mathrm{n} 64=\mathrm{C}$ \&

```
n10 + n26 + n14 + n30 = C &
n11 + n27 + n15 + n31 = C &
n12 + n28 + n16 + n32 = C %
n25 + n41 + n29 + n45 = C&
n26 + n42 + n30 + n46 = C &
n}27+n43+n31+n47=C
n28 + n44 + n32 + n48 = C&
n41 + n57 + n45 + n61 = C&
n42 + n58 + n46 + n62 = C &
n43 + n59 + n47 + n63 = C &
n44+n60 + n48 + n64=C
```

// $2 x 2$ cell blocks on the y, z plane

$$
\begin{aligned}
& \mathrm{n} 01+\mathrm{n} 17+\mathrm{n} 05+\mathrm{n} 21=\mathrm{C} \& \\
& \mathrm{n} 02+\mathrm{n} 18+\mathrm{n} 06+\mathrm{n} 22=\mathrm{C} \text { \& } \\
& \mathrm{n} 03+\mathrm{n} 19+\mathrm{n} 07+\mathrm{n} 23=\mathrm{C} \text { : } \\
& \mathrm{n} 04+\mathrm{n} 20+\mathrm{n} 08+\mathrm{n} 24=\mathrm{C} \varepsilon \\
& \mathrm{n} 17+\mathrm{n} 33+\mathrm{n} 21+\mathrm{n} 37=\mathrm{C} \text { \& } \\
& \mathrm{n} 18+\mathrm{n} 34+\mathrm{n} 22+\mathrm{n} 38=\mathrm{C} \text { \& } \\
& \mathrm{n} 19+\mathrm{n} 35+\mathrm{n} 23+\mathrm{n} 39=\mathrm{C} \& \\
& \mathrm{n} 20+\mathrm{n} 36+\mathrm{n} 24+\mathrm{n} 40=\mathrm{C} \& \\
& \mathrm{n} 33+\mathrm{n} 49+\mathrm{n} 37+\mathrm{n} 53=\mathrm{C} \text { : } \\
& \mathrm{n} 34+\mathrm{n} 50+\mathrm{n} 38+\mathrm{n} 54=\mathrm{C} \& \\
& \mathrm{n} 35+\mathrm{n} 51+\mathrm{n} 39+\mathrm{n} 55=\mathrm{C} \text { \& } \\
& \mathrm{n} 36+\mathrm{n} 52+\mathrm{n} 40+\mathrm{n} 56=\mathrm{C} \varepsilon \\
& \mathrm{n} 05+\mathrm{n} 21+\mathrm{n} 09+\mathrm{n} 25=\mathrm{C} \text { \& } \\
& \mathrm{n} 06+\mathrm{n} 22+\mathrm{n} 10+\mathrm{n} 26=\mathrm{C} \text { \& } \\
& \begin{array}{l}
\mathrm{n} 06+\mathrm{n} 22+\mathrm{n} 10+\mathrm{n} 26=\mathrm{C} \varepsilon \\
\mathrm{n} 07+\mathrm{n} 23+\mathrm{n} 11+\mathrm{n} 27=\mathrm{C}
\end{array} \\
& \mathrm{n} 08+\mathrm{n} 24+\mathrm{n} 12+\mathrm{n} 28=\mathrm{C} \dot{\varepsilon} \\
& \mathrm{n} 21+\mathrm{n} 37+\mathrm{n} 25+\mathrm{n} 41=\mathrm{C} \varepsilon \\
& \mathrm{n} 22+\mathrm{n} 38+\mathrm{n} 26+\mathrm{n} 42=\mathrm{C}= \\
& \mathrm{n} 23+\mathrm{n} 39+\mathrm{n} 27+\mathrm{n} 43=\mathrm{C} ⿷ \\
& \mathrm{n} 24+\mathrm{n} 40+\mathrm{n} 28+\mathrm{n} 44=\mathrm{C} \varepsilon \\
& \mathrm{n} 37+\mathrm{n} 53+\mathrm{n} 41+\mathrm{n} 57=\mathrm{C} \text { \& } \\
& \mathrm{n} 38+\mathrm{n} 54+\mathrm{n} 42+\mathrm{n} 58=\mathrm{C} \text { \& } \\
& \mathrm{n} 39+\mathrm{n} 55+\mathrm{n} 43+\mathrm{n} 59=\mathrm{C} \varepsilon \\
& \mathrm{n} 40+\mathrm{n} 56+\mathrm{n} 44+\mathrm{n} 60=\mathrm{C} \approx \\
& \mathrm{n} 09+\mathrm{n} 25+\mathrm{n} 13+\mathrm{n} 29=\mathrm{C} \text { \& }
\end{aligned}
$$

Mixing and matching different criteria to produce a cube.

Pan-triagonal and Polar

Pan-triagonal and self complementary Magic Cube

24--------10--------23-------- 9

161	$\mid 35$	$\mid 62$	$\mid 36$

$\begin{array}{llllllll}43 & 20 & 53 & 14 & 44 & 19 & 54 & 13\end{array}$
| 2 57-- 32--39---- 1--58----31--40

| | 22 | 47 | 12 | 49 | 21 | 48 | 11 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\mid 63$ | 6 | \mid | 33 | 28 | \mid | 64 | 5 | 27 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$41--18-|--55---16|--42--17-|--5615|$
$\begin{array}{llllllll}4 & 59 & 30 & 37 & 3 & 60 & 29 & 38\end{array}$
45 | 51 | 46 | 52 |
8--------26-------- $7-------25$

Most-Perfect, Polar, RowColPil Reversible

Cube form for coding criteria

