login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270203
Primes p such that p+2^4, p+2^6, p+2^8, p+2^10, p+2^12, p+2^14 and p + 2^16 are all primes.
4
163, 15667, 234067, 607093, 671353, 1447153, 1457857, 2162323, 5772097, 7717873, 9139453, 9549373, 11170933, 12039883, 13243063, 16442407, 16836163, 17784253, 18116473, 19433863, 21960577, 28209703, 29175283, 32380177, 33890803, 34613287, 34682113
OFFSET
1,1
LINKS
EXAMPLE
The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187, 163 + 4096 = 4259, 163 + 16384 = 16547 and 163 + 65536 = 65699 are all primes.
MATHEMATICA
m = {2^4, 2^6, 2^8, 2^10, 2^12, 2^14, 2^16}; Select[Prime@ Range[3*10^6], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
Select[Prime[Range[22*10^5]], AllTrue[#+2^Range[4, 16, 2], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 12 2018 *)
PROG
(Perl) use ntheory ":all"; say for sieve_prime_cluster(2, 1e8, 16, 64, 256, 1024, 4096, 16384, 65536); # Dana Jacobsen, Jul 13 2016
(Magma) [p: p in PrimesInInterval(2, 40000000) | forall{i: i in [16, 64, 256, 1024, 4096, 16384, 65536] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
CROSSREFS
Subsequence of A269859.
Sequence in context: A222837 A134160 A219127 * A049498 A217456 A138932
KEYWORD
nonn
AUTHOR
STATUS
approved