login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A134160
a(n) = 163 + 1053*n + 2520*n^2 + 2646*n^3 + 1029*n^4.
6
163, 7411, 49981, 180793, 477463, 1042303, 2002321, 3509221, 5739403, 8893963, 13198693, 18904081, 26285311, 35642263, 47299513, 61606333, 78936691, 99689251, 124287373, 153179113, 186837223, 225759151, 270467041, 321507733
OFFSET
0,1
COMMENTS
A000540(n) is divisible by A000330(n) if and only n is congruent to {1,2,4,5} mod 7 (see A047380) A134158 is case when n is congruent to 1 mod 7 A134159 is case when n is congruent to 2 mod 7 A134160 is case when n is congruent to 4 mod 7 A134161 is case when n is congruent to 5 mod 7 A133180 is union of A134158 and A134159 and A134160 and A134161
FORMULA
a(n) = (3*(7*n + 4)^4 + 6*(7*n + 4)^3 - 3*(7*n + 4) + 1)/7.
a(n) = sum(k=1..7*n+4, k^6) / sum(k=1..7*n+4, k^2).
G.f.: (163+6596*x+14556*x^2+3368*x^3+13*x^4)/(1-x)^5. - Colin Barker, May 25 2012
MATHEMATICA
Table[(3(7n + 4)^4 + 6(7n + 4)^3 - 3 (7n + 4) + 1)/7, {n, 0, 100}] (*Artur Jasinski*)
Table[Sum[k^6, {k, 1, 7n + 4}]/Sum[k^2, {k, 1, 7n + 4}], {n, 0, 100}] (*Artur Jasinski*)
LinearRecurrence[{5, -10, 10, -5, 1}, {163, 7411, 49981, 180793, 477463}, 30] (* Harvey P. Dale, Jul 20 2024 *)
PROG
(PARI) a(n)=163+1053*n+2520*n^2+2646*n^3+1029*n^4 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 10 2007
STATUS
approved