OFFSET
0,1
COMMENTS
A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380). A134158 is the case when n is congruent to 1 mod 7. A134159 is the case when n is congruent to 2 mod 7. A134160 is the case when n is congruent to 4 mod 7. A134161 is the case when n is congruent to 5 mod 7. A133180 is the union of A134158 and A134159 and A134160 and A134161.
FORMULA
a(n) = (3*(7*n + 2)^4 + 6*(7*n + 2)^3 - 3*(7*n + 2) + 1)/7.
a(n) = (Sum_{k=1..7n+2} k^6) / (Sum_{k=1..7n+2} k^2).
G.f.: -(13+3368*x+14556*x^2+6596*x^3+163*x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
MATHEMATICA
Table[(3(7n + 2)^4 + 6(7n + 2)^3 - 3 (7n + 2) + 1)/7, {n, 0, 100}]
Table[Sum[k^6, {k, 1, 7n + 2}]/Sum[k^2, {k, 1, 7n + 2}], {n, 0, 100}] (* Artur Jasinski *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 10 2007
STATUS
approved