login
A134158
a(n) = 1 + 27n + 252n^2 + 882n^3 + 1029n^4.
7
1, 2191, 24583, 109513, 324013, 759811, 1533331, 2785693, 4682713, 7414903, 11197471, 16270321, 22898053, 31369963, 42000043, 55126981, 71114161, 90349663, 113246263, 140241433, 171797341, 208400851, 250563523, 298821613, 353736073, 415892551, 485901391
OFFSET
0,2
COMMENTS
A000540(n) is divisible by A000330(n) if and only if n is congruent to {1,2,4,5} mod 7 (see A047380).
This sequence is the case when n is congruent to 1 mod 7.
A134159 is the case when n is congruent to 2 mod 7.
A134160 is the case when n is congruent to 4 mod 7.
A134161 is the case when n is congruent to 5 mod 7.
A133180 is the union of this sequence, A134159, A134160, and A134161.
FORMULA
a(n) = (3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7.
a(n) = (Sum_{k=1..7n+1} k^6) / (Sum_{k=1..7n+1} k^2).
G.f.: -(1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4. - Colin Barker, Aug 12 2017
MATHEMATICA
Table[(3(7n + 1)^4 + 6(7n + 1)^3 - 3 (7n + 1) + 1)/7, {n, 0, 100}] (* or *) Table[Sum[k^6, {k, 1, 7n + 1}]/Sum[k^2, {k, 1, 7n + 1}], {n, 0, 100}] (* Artur Jasinski *)
PROG
(PARI) Vec((1 + 2186*x + 13638*x^2 + 8498*x^3 + 373*x^4) / (1 - x)^5 + O(x^30)) \\ Colin Barker, Aug 12 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 10 2007
STATUS
approved