login
A352344
Starts of runs of 3 consecutive lazy-Pell-Niven numbers (A352342).
8
2196, 2650, 5784, 17459, 28950, 57134, 112878, 124506, 147078, 162809, 169694, 191538, 210494, 218654, 223344, 223459, 230894, 239360, 258740, 277455, 278900, 285615, 289695, 291328, 291858, 295408, 311524, 314658, 324734, 332894, 335179, 341900, 347718, 362880
OFFSET
1,1
LINKS
EXAMPLE
2196 is a term since 2196, 2197 and 2198 are all divisible by the sum of the digits in their maximal Pell representation:
k A352339(k) A352340(k) k/A352340(k)
---- ---------- ---------- ------------
2196 121222020 12 183
2197 121222021 13 169
2198 121222022 14 157
MATHEMATICA
pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; seq[count_, nConsec_] := Module[{lpn = lazyPellNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ lpn, c++; AppendTo[s, k - nConsec]]; lpn = Join[Rest[lpn], {lazyPellNivenQ[k]}]; k++]; s]; seq[30, 3]
CROSSREFS
Subsequence of A352342 and A352343.
A352345 is a subsequence.
Sequence in context: A134158 A227488 A225719 * A342428 A229319 A109408
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 12 2022
STATUS
approved