login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352346
Common terms between A061078 and A061077.
1
26, 52, 148, 280, 320, 454, 1150, 1480, 8000, 41650, 80300, 165656, 166088, 614900, 2353700, 2859460, 28233200, 66130400, 68941640, 85717240, 107300320, 131507080, 155478800, 207666520, 1426680920, 1824596800, 2468014900, 2475648820, 5342351060, 5355218900, 5857281500, 8550475900, 36025361120
OFFSET
1,1
COMMENTS
Smarandache's conjecture: there are infinitely many terms.
This is a subsequence of A061076.
REFERENCES
A. Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001. Page 267
LINKS
EXAMPLE
26 is a term of this sequence, in fact:
26 = 1+3+5+7+9+1*1 (A061077(6)=26);
26 = 2+4+6+8+1*0+1*2+1*4 (A061078(7)=26).
MATHEMATICA
Intersection[Accumulate[Times @@@ IntegerDigits[Range[2, 10000000, 2]]],
Accumulate[Times @@@ IntegerDigits[Range[1, 10000000, 2]]]]
PROG
(Python)
from math import prod
from itertools import islice
def A352346_gen(): # generator of terms
n1, m1, n2, m2 = 1, 1, 2, 2
while True:
if m1 == m2:
yield m1
k = 0
while k == 0:
n1 += 2
m1 += (k := prod(int(d) for d in str(n1)))
while m2 < m1:
n2 += 2
m2 += prod(int(d) for d in str(n2))
A352346_list = list(islice(A352346_gen(), 20)) # Chai Wah Wu, Mar 21 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Luca Onnis, Mar 12 2022
STATUS
approved