OFFSET
0,3
COMMENTS
a(n) = Phi_28(n) where Phi_k(x) is the k-th cyclotomic polynomial.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
G.f.: (1 - 12*x + 3342*x^2 + 435488*x^3 + 9828495*x^4 + 65845800*x^5 + 163388148*x^6 + 163386432*x^7 + 65847087*x^8 + 9827780*x^9 + 435774*x^10 + 3264*x^11 + x^12)/(1 - x)^13.
Sum_{n>=0} 1/a(n) = 2.000307316...
MAPLE
a:= n-> add((-n^2)^j, j=0..6):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 24 2019
MATHEMATICA
Table[n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1, {n, 0, 17}]
Table[Cyclotomic[28, n], {n, 0, 17}]
PROG
(PARI) a(n) = polcyclo(28, n); \\ Altug Alkan, Mar 13 2016
(Magma) [(&+[(-n^2)^j: j in [0..6]]): n in [0..20]]; // G. C. Greubel, Apr 24 2019
(Sage) [sum((-n^2)^j for j in (0..6)) for n in (0..20)] # G. C. Greubel, Apr 24 2019
(GAP) List([0..20], n-> Sum([0..6], j-> (-n^2)^j)) # G. C. Greubel, Apr 24 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Mar 13 2016
STATUS
approved