login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270204
a(n) = n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1.
2
1, 1, 3277, 478297, 15790321, 234750601, 2117950381, 13564461457, 67662254017, 278985273841, 990099009901, 3112703553961, 8854610100337, 23161037562937, 56406126018061, 129172239050401, 280379743338241, 580613195032417, 1153271900252557, 2207200789455481
OFFSET
0,3
COMMENTS
a(n) = Phi_28(n) where Phi_k(x) is the k-th cyclotomic polynomial.
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
G.f.: (1 - 12*x + 3342*x^2 + 435488*x^3 + 9828495*x^4 + 65845800*x^5 + 163388148*x^6 + 163386432*x^7 + 65847087*x^8 + 9827780*x^9 + 435774*x^10 + 3264*x^11 + x^12)/(1 - x)^13.
Sum_{n>=0} 1/a(n) = 2.000307316...
MAPLE
a:= n-> add((-n^2)^j, j=0..6):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 24 2019
MATHEMATICA
Table[n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1, {n, 0, 17}]
Table[Cyclotomic[28, n], {n, 0, 17}]
PROG
(PARI) a(n) = polcyclo(28, n); \\ Altug Alkan, Mar 13 2016
(Magma) [(&+[(-n^2)^j: j in [0..6]]): n in [0..20]]; // G. C. Greubel, Apr 24 2019
(Sage) [sum((-n^2)^j for j in (0..6)) for n in (0..20)] # G. C. Greubel, Apr 24 2019
(GAP) List([0..20], n-> Sum([0..6], j-> (-n^2)^j)) # G. C. Greubel, Apr 24 2019
CROSSREFS
Cf. similar sequences of the type Phi_k(n) listed in A269442.
Sequence in context: A245482 A356638 A244626 * A293626 A152506 A309284
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Mar 13 2016
STATUS
approved