login
A356638
Odd composite numbers k such that 2^((k-1)/2) == -1 (mod k).
0
3277, 29341, 49141, 80581, 88357, 104653, 196093, 314821, 458989, 476971, 489997, 800605, 838861, 873181, 877099, 1004653, 1251949, 1302451, 1325843, 1373653, 1397419, 1441091, 1507963, 1509709, 1530787, 1678541, 1811573, 1907851, 1987021, 2004403, 2269093
OFFSET
1,1
COMMENTS
Counterexamples (pseudoprimes) to the hypothesis that this congruence is sufficient to prove that an odd number is prime.
Compare with Proth's theorem.
MATHEMATICA
Select[Range[1, 2.5*10^6, 2], CompositeQ[#] && PowerMod[2, (# - 1)/2, #] == # - 1 &] (* Amiram Eldar, Aug 19 2022 *)
PROG
(PARI) forstep(k=3, 10^8, 2, isprime(k)&&next(); Mod(2, k)^((k-1)/2)==-1&&print1(k, ", "))
CROSSREFS
Sequence in context: A141629 A116460 A245482 * A244626 A270204 A293626
KEYWORD
nonn
AUTHOR
Jeppe Stig Nielsen, Aug 19 2022
STATUS
approved