OFFSET
1,1
COMMENTS
a(n) is an Euler pseudoprime to base 2, so it is also a Fermat pseudoprime to base 2.
This sequence is analogous to the sequence A000229 of primes.
Conjecture: the smallest quadratic non-residue modulo a(n) is prime(n), i.e., A020649(a(n)) = prime(n).
a(10) <= 41154189126635405260441. - Daniel Suteu, Jul 22 2019
FORMULA
According to the data, b^((a(n)-1)/2) == (b / a(n)) (mod a(n)) for every natural b <= prime(n), where (x / y) is the Jacobi symbol.
PROG
(PARI) isok(n, k) = (k%2==1) && !isprime(k) && Mod(prime(n), k)^((k-1)/2) == Mod(-1, k) && !for(b=2, prime(n)-1, if(Mod(b, k)^((k-1)/2) != Mod(1, k), return(0)));
a(n) = for(k=9, oo, if(isok(n, k), return(k))); \\ Daniel Suteu, Jul 22 2019
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Thomas Ordowski, Jul 21 2019
EXTENSIONS
a(5)-a(9) from Amiram Eldar, Jul 21 2019
STATUS
approved