login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309286
a(0) = 0, a(1) = 1, and for any n > 1, a(n) = Sum_{k > 1} (-1)^k * a(floor(n/k^2)).
1
0, 1, 0, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3
OFFSET
0,19
COMMENTS
This sequence is a signed variant of A309262.
LINKS
EXAMPLE
a(9) = a(floor(9/2^2)) - a(floor(9/3^3)) = a(2) - a(1) = 0 - 1 = -1.
MATHEMATICA
Join[{0}, Clear[a]; a[0]=0; a[1]=1; a[n_]:=a[n]=Sum[a[Floor[n/k^2]](-1)^k, {k, 2, n}]; Table[a[n], {n, 1, 100}]] (* Vincenzo Librandi, Jul 22 2019 *)
PROG
(PARI) a(n) = if (n<=1, n, sum (k=2, sqrtint(n), (-1)^k * a(n\k^2)))
CROSSREFS
Cf. A309262.
Sequence in context: A376680 A323356 A319244 * A102671 A292519 A037815
KEYWORD
sign
AUTHOR
Rémy Sigrist, Jul 21 2019
STATUS
approved