|
|
A309286
|
|
a(0) = 0, a(1) = 1, and for any n > 1, a(n) = Sum_{k > 1} (-1)^k * a(floor(n/k^2)).
|
|
1
|
|
|
0, 1, 0, 0, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1, -1, -1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,19
|
|
COMMENTS
|
This sequence is a signed variant of A309262.
|
|
LINKS
|
|
|
EXAMPLE
|
a(9) = a(floor(9/2^2)) - a(floor(9/3^3)) = a(2) - a(1) = 0 - 1 = -1.
|
|
MATHEMATICA
|
Join[{0}, Clear[a]; a[0]=0; a[1]=1; a[n_]:=a[n]=Sum[a[Floor[n/k^2]](-1)^k, {k, 2, n}]; Table[a[n], {n, 1, 100}]] (* Vincenzo Librandi, Jul 22 2019 *)
|
|
PROG
|
(PARI) a(n) = if (n<=1, n, sum (k=2, sqrtint(n), (-1)^k * a(n\k^2)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|