login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309262 a(0) = 0, a(1) = 1, and for any n > 1, a(n) = Sum_{k > 1} a(floor(n/k^2)). 2
0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,17

COMMENTS

For any n > 1 and k > A000196(n), a(floor(n/k^2)) = a(0) = 0, hence the series in the name is well defined.

This sequence is a variant of A022825; here we sum terms of the form a(floor(n/k^2)), there terms of the form a(floor(n/k)).

LINKS

Rémy Sigrist, Table of n, a(n) for n = 0..10000

EXAMPLE

a(5) = a(floor(5/2^2)) = a(1) = 1.

MATHEMATICA

Join[{0}, Clear[a]; a[0]=0; a[1]=1; a[n_]:=a[n]=Sum[a[Floor[n/k^2]], {k, 2, n}]; Table[a[n], {n, 1, 100}]] (* Vincenzo Librandi, Jul 22 2019 *)

PROG

(PARI) a(n) = if (n<=1, n, sum (k=2, sqrtint(n), a(n\k^2)))

CROSSREFS

Cf. A000196, A022825.

Sequence in context: A328143 A278402 A276415 * A064983 A124933 A133884

Adjacent sequences:  A309259 A309260 A309261 * A309263 A309264 A309265

KEYWORD

nonn

AUTHOR

Rémy Sigrist, Jul 19 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 19:36 EDT 2021. Contains 343868 sequences. (Running on oeis4.)