The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309262 a(0) = 0, a(1) = 1, and for any n > 1, a(n) = Sum_{k > 1} a(floor(n/k^2)). 2
 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,17 COMMENTS For any n > 1 and k > A000196(n), a(floor(n/k^2)) = a(0) = 0, hence the series in the name is well defined. This sequence is a variant of A022825; here we sum terms of the form a(floor(n/k^2)), there terms of the form a(floor(n/k)). LINKS Rémy Sigrist, Table of n, a(n) for n = 0..10000 EXAMPLE a(5) = a(floor(5/2^2)) = a(1) = 1. MATHEMATICA Join[{0}, Clear[a]; a[0]=0; a[1]=1; a[n_]:=a[n]=Sum[a[Floor[n/k^2]], {k, 2, n}]; Table[a[n], {n, 1, 100}]] (* Vincenzo Librandi, Jul 22 2019 *) PROG (PARI) a(n) = if (n<=1, n, sum (k=2, sqrtint(n), a(n\k^2))) CROSSREFS Cf. A000196, A022825. Sequence in context: A328143 A278402 A276415 * A064983 A124933 A133884 Adjacent sequences:  A309259 A309260 A309261 * A309263 A309264 A309265 KEYWORD nonn AUTHOR Rémy Sigrist, Jul 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 06:08 EDT 2022. Contains 356029 sequences. (Running on oeis4.)