login
A124933
Number of prime divisors (counted with multiplicity) of number of endofunctions on n points (A001372).
0
0, 0, 1, 1, 1, 1, 3, 3, 2, 2, 2, 2, 2, 4, 2, 3, 5, 3, 3, 3, 3, 5, 3, 2, 7, 9, 5, 3, 5, 5, 6, 3, 5, 6, 1, 2, 5, 4, 3, 4, 3, 3, 7, 7, 5, 7, 8, 4, 12, 7, 8, 1, 7, 4, 2, 4, 5, 4, 2, 5, 4, 3, 5, 6, 12, 2, 3, 5, 2, 3, 4, 4, 3, 5, 6, 2, 6, 3, 5, 3, 7, 2, 3, 7, 7, 8, 6, 5, 2, 7, 7, 4, 10, 11, 7, 7, 5, 4, 5, 6
OFFSET
0,7
COMMENTS
Number of prime divisors (counted with multiplicity) of A001372 Number of mappings (or mapping patterns) from n points to themselves; number of endofunctions. {n: a(n) = 1} give the primes, beginning: A001372(2) = 3, A001372(3) = 7, A001372(4) = 19, A001372(2) = 47. {n: a(n) = 2} give the semiprimes, beginning: A001372(8) = 951 = 3 * 317, A001372(9) = 2615 = 5 * 523, A001372(10) = 7318 = 2 * 3659, A001372(11) = 20491 = 31 * 661, A001372(12) = 57903 = 3 * 19301, A001372(14) = 466199 = 107 * 4357, A001372(23) = 6218869389 = 3 * 2072956463. 3-almost primes begin: A001372(6) = 130 = 2 * 5 * 13, A001372(7) = 343 = 7^3, A001372(15) = 1328993 = 19 * 113 * 619, A001372(17) = 10884049 = 11 * 353 * 2803, A001372(18) = 31241170 = 2 * 5 * 3124117, A001372(19) = 89814958 = 2 * 5113 * 8783, A001372(20) = 258604642 = 2 * 101 * 1280221, A001372(22) = 2152118306 = 2 * 13 * 82773781, A001372(27) = 437571896993.
LINKS
Harald Fripertinger and Peter Schopf, Endofunctions of given cycle type, The Annales des Sciences Mathematiques du Quebec 23 (2), 173 - 187, 1999. Web page links to PDF. Relates combinatorial species theory to more classical enumeration.
FORMULA
a(n) = Omega(A001372(n)) = A001222(A001372(n)).
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Nov 12 2006
EXTENSIONS
More terms from R. J. Mathar, Sep 23 2007
STATUS
approved