|
|
A309264
|
|
Numbers k such that s + t = k with 0 < s < t where t and t - s are both prime.
|
|
1
|
|
|
4, 7, 8, 9, 11, 12, 15, 17, 19, 20, 21, 23, 24, 25, 27, 29, 31, 32, 33, 35, 36, 39, 41, 43, 44, 45, 47, 49, 51, 53, 55, 56, 57, 59, 60, 61, 63, 65, 67, 69, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 87, 89, 91, 92, 93, 95, 97, 99, 101, 103, 104, 105, 107
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
4 is in the sequence since there are numbers, s=1 and t=3, that satisfy s + t = 4, where s < t, t = 3 (prime) and t - s = 3 - 1 = 2 (prime).
7 is in the sequence since there are numbers, s=2 and t=5 that satisfy s + t = 7, where s < t, t = 5 (prime) and t - s = 5 - 2 = 3 (prime).
|
|
MATHEMATICA
|
Flatten[Table[If[Sum[(PrimePi[n - i] - PrimePi[n - i - 1]) (PrimePi[n - 2 i] - PrimePi[n - 2 i - 1]), {i, Floor[n/2]}] > 0, n, {}], {n, 100}]]
|
|
PROG
|
(PARI) isok(k) = {forprime (t=1, k, if (((s = k - t) < t) && (s > 0) && isprime(t-s), return (1)); ); } \\ Michel Marcus, Jul 20 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|