OFFSET
1,4
COMMENTS
A rook in Glinski's hexagonal chess can move to any cell along the perpendicular bisector of any of the 6 edges of the hexagonal cell it's on (analogous to a rook in orthodox chess which can move to any cell along the perpendicular bisector of any of the 4 edges of the square cell it's on).
LINKS
Alain Brobecker, Non Attacking Rooks on Hexhex and Triangular boards
Chess variants, Glinski's Hexagonal Chess
Vaclav Kotesovec, All inequivalent solutions for n = 2,3,4 and 5
Wikipedia, Hexagonal chess - GliĆski's hexagonal chess
EXAMPLE
a(1) = 1
.
o
.
a(2) = 1
.
o .
. . o
o .
.
a(3) = 1
.
o . .
. . o .
. . . . o
o . . .
. o .
.
a(4) = 5
.
o . . . o . . . o . . . . o . . . o . .
. . o . . . . o . . . . . o . o . . . . . . . . o
. . . . o . . . . . . o . . . . . o . . . . . o o . . . . .
. . . . . . o . o . . . . . . . o . . . . . . . o . . . . . . o . . .
o . . . . . . . . . . o o . . . . . . . . . . o . . . . . o
. o . . . . . o . . . . . . o o . . . . o . . . .
. . o . o . . . . o . . . o . . . . o .
.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Sangeet Paul, Jul 19 2019
EXTENSIONS
a(1)-a(7) confirmed by Vaclav Kotesovec, Aug 16 2019
a(8) from Alain Brobecker, Dec 10 2021
a(8) confirmed by Vaclav Kotesovec, Dec 12 2021
a(9) from Alain Brobecker, Dec 13 2021
a(9) confirmed by Vaclav Kotesovec, Dec 18 2021
a(10)-a(11) from Bert Dobbelaere, Oct 24 2022
STATUS
approved