login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261256
Let S_k denote the sequence of numbers j such that A001222(j) - A001221(j) = k. Then a(n) is the n-th term of S_n.
13
4, 24, 72, 160, 432, 896, 2592, 5632, 12800, 26624, 61440, 124416, 278528, 622592, 1376256, 2949120, 5971968, 12058624, 25690112, 60817408, 130023424, 262144000, 528482304, 1107296256, 2264924160, 4586471424, 9395240960, 19864223744, 40265318400, 83751862272
OFFSET
1,1
COMMENTS
S_0 would correspond to the squarefree numbers (A005117), that is, numbers j such that A001222(j) = A001221(j). Note that S_0 is excluded from the scheme. - Michel Marcus, Sep 21 2015
LINKS
FORMULA
a(n+1) > 2*a(n).
a(n) >= 2^prime(n) for n < 5.
a(n) = A257851(n,n-1). - Reinhard Zumkeller, Nov 29 2015
a(n) = b(n)*2^(n+1), where b(n) consists of the values of k/2^excess(k) over odd k, sorted in ascending order. In particular, a(n) <= prime(n)*2^(n+1), with equality only when n = 2. - Charlie Neder, Jan 31 2019
EXAMPLE
For n = 1, S_1 = {4, 9, 12, 18, 20, 25, ...}, so a(1) = S_1(1) = 4.
For n = 2, S_2 = {8, 24, 27, 36, 40, 54, ...}, so a(2) = S_2(2) = 24.
For n = 3, S_3 = {16, 48, 72, 80, 81, 108, ...}, so a(3) = S_3(3) = 72.
For n = 4, S_4 = {32, 96, 144, 160, 216, 224, ...}, so a(4) = S_4(4) = 160.
For n = 5, S_5 = {64, 192, 288, 320, 432, 448, ...}, so a(5) = S_5(5) = 432.
MATHEMATICA
OutSeq = {}; For[i = 1, i <= 16, i++, l = Select[Range[10^2*2^i], PrimeOmega[#] - PrimeNu[#] == i &]; AppendTo[OutSeq, l[[i]]]]; OutSeq
PROG
(PARI) a(n) = {ik = 1; nbk = 0; while (nbk != n, ik++; if (bigomega(ik) == omega(ik) + n, nbk++); ); ik; } \\ Michel Marcus, Oct 06 2015
(Haskell)
a261256 n = a257851 n (n - 1) -- Reinhard Zumkeller, Nov 29 2015
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(17)-a(21) from Jon E. Schoenfield, Sep 12 2015
More terms from Charlie Neder, Jan 31 2019
STATUS
approved