login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195092
Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 8.
12
512, 1536, 2304, 2560, 3456, 3584, 5184, 5632, 6400, 6656, 7680, 7776, 8704, 9728, 10752, 11520, 11664, 11776, 12544, 14848, 15872, 16000, 16128, 16896, 17280, 17496, 17920, 18944, 19200, 19683, 19968, 20992, 22016, 24064, 24192
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0014793..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024
FORMULA
A046660(a(n)) = 8. - Reinhard Zumkeller, Nov 29 2015
MATHEMATICA
Select[Range[25000], PrimeOmega[#]-PrimeNu[#]==8&]
PROG
(PARI) is(n)=bigomega(n)-omega(n)==8 \\ Charles R Greathouse IV, Sep 14 2015
(Haskell)
a195092 n = a195092_list !! (n-1)
a195092_list = filter ((== 8) . a046660) [1..]
-- Reinhard Zumkeller, Nov 29 2015
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, Sep 08 2011
STATUS
approved