OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0003698..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 25 2024
LINKS
FORMULA
A046660(a(n)) = 10. - Reinhard Zumkeller, Nov 29 2015
EXAMPLE
14336 = 2^11 * 7^1, so it has 12 prime factors (counted with multiplicity) and 2 distinct prime factors, and 12-2 = 10.
MAPLE
op(select(n->bigomega(n)-nops(factorset(n))=10, [$1..104448])); # Paolo P. Lava, Jul 03 2018
MATHEMATICA
Select[Range[200000], PrimeOmega[#] - PrimeNu[#] == 10&]
PROG
(Haskell)
a195069 n = a195069_list !! (n-1)
a195069_list = filter ((== 10) . a046660) [1..]
-- Reinhard Zumkeller, Nov 29 2015
(PARI) isok(n) = bigomega(n) - omega(n) == 10; \\ Michel Marcus, Jul 03 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Harvey P. Dale, Sep 08 2011
STATUS
approved