|
|
A235192
|
|
Number of (n+1) X (2+1) 0..6 arrays with every 2 X 2 subblock having its diagonal sum differing from its antidiagonal sum by 5, with no adjacent elements equal (constant-stress tilted 1 X 1 tilings).
|
|
1
|
|
|
512, 1544, 4724, 15604, 51144, 176104, 597712, 2109748, 7324940, 26321996, 92931536, 338626216, 1211027400, 4461593140, 16115753860, 59891994316, 218009580968, 815799341144, 2987272973648, 11239524639028, 41346560068716
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) +52*a(n-2) -367*a(n-3) -995*a(n-4) +9350*a(n-5) +7034*a(n-6) -128869*a(n-7) +26637*a(n-8) +1045428*a(n-9) -801048*a(n-10) -5098437*a(n-11) +5754163*a(n-12) +14714982*a(n-13) -20381230*a(n-14) -23985995*a(n-15) +38063780*a(n-16) +20215810*a(n-17) -35199080*a(n-18) -8246780*a(n-19) +13170048*a(n-20) +2801112*a(n-21) -1572480*a(n-22) -393120*a(n-23).
|
|
EXAMPLE
|
Some solutions for n=4:
4 1 4 5 6 3 4 2 6 2 3 0 6 2 6 6 3 5 1 5 1
0 2 0 6 2 4 3 6 5 6 2 4 0 1 0 3 5 2 2 1 2
6 3 6 3 4 1 2 0 4 2 3 0 6 2 6 5 2 4 0 4 0
3 5 3 6 2 4 1 4 3 4 0 2 5 6 5 3 5 2 3 2 3
5 2 5 4 5 2 4 2 6 5 6 3 4 0 4 5 2 4 6 0 6
|
|
CROSSREFS
|
Column 2 of A235198.
Sequence in context: A258726 A220583 A195092 * A203451 A251192 A251187
Adjacent sequences: A235189 A235190 A235191 * A235193 A235194 A235195
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 04 2014
|
|
STATUS
|
approved
|
|
|
|