login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224837
Surface area of Johnson square pyramid (rounded down) with all the edge-lengths equal to n.
2
2, 10, 24, 43, 68, 98, 133, 174, 221, 273, 330, 393, 461, 535, 614, 699, 789, 885, 986, 1092, 1204, 1322, 1445, 1573, 1707, 1846, 1991, 2141, 2297, 2458, 2625, 2797, 2975, 3158, 3346, 3540, 3740, 3945, 4155, 4371, 4592, 4819, 5051, 5289, 5532, 5781, 6035, 6294
OFFSET
1,1
COMMENTS
Johnson square pyramid: a square base with four equilateral triangular-faces. All the edge-lengths are equal.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..1000 [a(613), a(864) corrected by Georg Fischer]
Wikipedia, Square pyramid
FORMULA
a(n) = floor((1+sqrt(3))*n^2).
EXAMPLE
a(3) = 24: Surface area = (1+sqrt(3))*3^2 = 24.588... and floor(24.588...) = 24.
MAPLE
a:= n-> floor((1+sqrt(3))*n^2):
seq(a(n), n=1..48);
MATHEMATICA
Table[Floor[(1+Sqrt[3])*k^2], {k, 500}]
PROG
(PARI) vector(500, k, floor((1+sqrt(3))*k^2))
(PARI) a(n)=n^2+sqrtint(3*n^4) \\ Charles R Greathouse IV, Sep 18 2013
CROSSREFS
Sequence in context: A373276 A330280 A293412 * A049450 A092906 A244383
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Sep 18 2013
STATUS
approved