login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292694
Sum over all Dyck paths of semilength n of products over all peaks p of (n*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p.
2
1, 2, 24, 764, 47650, 4953222, 776036520, 171140340632, 50569280587134, 19291547098210250, 9231053150452094896, 5414004448824367167444, 3819333773584571070766756, 3190486349393577447421521614, 3114480787139044226695876470000, 3512892958123523912923517986350000
OFFSET
0,2
LINKS
Wikipedia, Lattice path
FORMULA
a(n) = A258222(n,n).
MAPLE
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
a:= n-> b(2*n, 0, false, n):
seq(a(n), n=0..18);
MATHEMATICA
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k] If[t, (k*x + y)/y, 1] + b[x - 1, y + 1, True, k]]];
a[n_] := b[2n, 0, False, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
CROSSREFS
Main diagonal of A258222.
Sequence in context: A009396 A338188 A274634 * A012128 A099704 A265879
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 20 2017
STATUS
approved