Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jun 02 2018 10:38:00
%S 1,2,24,764,47650,4953222,776036520,171140340632,50569280587134,
%T 19291547098210250,9231053150452094896,5414004448824367167444,
%U 3819333773584571070766756,3190486349393577447421521614,3114480787139044226695876470000,3512892958123523912923517986350000
%N Sum over all Dyck paths of semilength n of products over all peaks p of (n*x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p.
%H Alois P. Heinz, <a href="/A292694/b292694.txt">Table of n, a(n) for n = 0..200</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path">Lattice path</a>
%F a(n) = A258222(n,n).
%p b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
%p `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (k*x+y)/y, 1)
%p + b(x-1, y+1, true, k) ))
%p end:
%p a:= n-> b(2*n, 0, false, n):
%p seq(a(n), n=0..18);
%t b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k] If[t, (k*x + y)/y, 1] + b[x - 1, y + 1, True, k]]];
%t a[n_] := b[2n, 0, False, n];
%t Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Jun 02 2018, from Maple *)
%Y Main diagonal of A258222.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Sep 20 2017