The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081184 7th binomial transform of (0,1,0,2,0,4,0,8,0,16,...). 6
0, 1, 14, 149, 1428, 12989, 114730, 995737, 8548008, 72872473, 618458246, 5233409213, 44200191420, 372832446869, 3142245259426, 26468308629121, 222870793614672, 1876180605036721, 15791601170624510, 132901927952017253 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
FORMULA
a(n) = 14*a(n-1) - 47*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1 - 14*x + 47*x^2). [Corrected by Georg Fischer, May 15 2019]
a(n) = ((7 + sqrt(2))^n - (7 - sqrt(2))^n)/(2*sqrt(2)).
a(n) = Sum_{k=0..n} C(n,2*k+1) * 2^k * 7^(n-2*k-1).
E.g.f.: exp(7*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
MATHEMATICA
CoefficientList[Series[x/(1-14*x+47*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{14, -47}, {0, 1}, 30] (* Harvey P. Dale, Nov 12 2013 *)
PROG
(Magma) [n le 2 select n-1 else 14*Self(n-1)-47*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 07 2013
(SageMath)
A081184=BinaryRecurrenceSequence(14, -47, 0, 1)
[A081184(n) for n in range(31)] # G. C. Greubel, Jan 14 2024
CROSSREFS
Binomial transform of A081183.
Cf. A081185.
Sequence in context: A065899 A162965 A067103 * A032343 A222614 A019521
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 11 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 11:18 EDT 2024. Contains 373331 sequences. (Running on oeis4.)