login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A340186
Number of Brown's diagonal Latin squares of order 2n.
3
0, 48, 184320, 3948134400
OFFSET
1,2
COMMENTS
A Brown's diagonal Latin square is a horizontally symmetric row-inverse or vertically symmetric column-inverse diagonal Latin square. Diagonal Latin squares of this type have interesting properties, for example, a large number of transversals.
Plain symmetry diagonal Latin squares do not exist for odd orders, so a(2n+1)=0.
REFERENCES
J. W. Brown, F. Cherry, L. Most, M. Most, E. T. Parker, W. D. Wallis, Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, 1992, Vol. 139, pp. 43-49.
LINKS
E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
FORMULA
a(n) = A339305(n) * n!.
EXAMPLE
The diagonal Latin square
.
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
4 0 1 7 3 6 2 8 9 5
8 7 6 5 9 0 4 3 2 1
7 6 5 0 8 1 9 4 3 2
9 8 7 6 5 4 3 2 1 0
5 9 8 2 6 3 7 1 0 4
3 5 0 8 7 2 1 9 4 6
2 3 4 9 1 8 0 5 6 7
6 4 9 1 2 7 8 0 5 3
.
is a Brown's square since it is horizontally symmetric (see A287649) and its rows form row-inverse pairs:
.
0 1 2 3 4 5 6 7 8 9 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 1 2 3 4 0 9 5 6 7 8 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 4 0 1 7 3 6 2 8 9 5
. . . . . . . . . . 8 7 6 5 9 0 4 3 2 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 8 7 6 5 4 3 2 1 0 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 5 9 8 2 6 3 7 1 0 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
7 6 5 0 8 1 9 4 3 2 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 3 5 0 8 7 2 1 9 4 6
2 3 4 9 1 8 0 5 6 7 . . . . . . . . . .
. . . . . . . . . . 6 4 9 1 2 7 8 0 5 3
CROSSREFS
Sequence in context: A081262 A238001 A228143 * A008704 A037947 A282596
KEYWORD
nonn,more,hard
AUTHOR
Eduard I. Vatutin, Dec 31 2020
EXTENSIONS
a(3) corrected by Eduard I. Vatutin and Oleg Zaikin, Jan 12 2025
STATUS
approved