login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340188
Sum of A063994 and its Dirichlet inverse, where A063994(x) = Product_{primes p dividing x} gcd(p-1, x-1).
3
2, 0, 0, 1, 0, 4, 0, 1, 4, 8, 0, 0, 0, 12, 16, 1, 0, -4, 0, -2, 24, 20, 0, 1, 16, 24, 0, -4, 0, -28, 0, 1, 40, 32, 48, 5, 0, 36, 48, 1, 0, -48, 0, -8, -16, 44, 0, 1, 36, -32, 64, -10, 0, 8, 80, 5, 72, 56, 0, 24, 0, 60, -32, 1, 96, -88, 0, -14, 88, -116, 0, 0, 0, 72, -48, -16, 120, -108, 0, 1, 4, 80, 0, 48, 128, 84, 112
OFFSET
1,1
FORMULA
a(n) = A063994(n) + A340187(n).
a(n) = A340189(n) - A318828(n).
PROG
(PARI)
up_to = 65537;
A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v340187 = DirInverse(vector(up_to, n, A063994(n)));
A340187(n) = v340187[n];
A340188(n) = (A063994(n)+A340187(n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Dec 31 2020
STATUS
approved