login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340188 Sum of A063994 and its Dirichlet inverse, where A063994(x) = Product_{primes p dividing x} gcd(p-1, x-1). 3
2, 0, 0, 1, 0, 4, 0, 1, 4, 8, 0, 0, 0, 12, 16, 1, 0, -4, 0, -2, 24, 20, 0, 1, 16, 24, 0, -4, 0, -28, 0, 1, 40, 32, 48, 5, 0, 36, 48, 1, 0, -48, 0, -8, -16, 44, 0, 1, 36, -32, 64, -10, 0, 8, 80, 5, 72, 56, 0, 24, 0, 60, -32, 1, 96, -88, 0, -14, 88, -116, 0, 0, 0, 72, -48, -16, 120, -108, 0, 1, 4, 80, 0, 48, 128, 84, 112 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..8191

Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537

FORMULA

a(n) = A063994(n) + A340187(n).

a(n) = A340189(n) - A318828(n).

PROG

(PARI)

up_to = 65537;

A063994(n) = { my(f=factor(n)); prod(i=1, #f~, gcd(f[i, 1]-1, n-1)); };

DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.

v340187 = DirInverse(vector(up_to, n, A063994(n)));

A340187(n) = v340187[n];

A340188(n) = (A063994(n)+A340187(n));

CROSSREFS

Cf. A063994, A318828, A340187, A340189.

Cf. also A319340, A340191.

Sequence in context: A109502 A323887 A323365 * A323911 A322581 A209915

Adjacent sequences:  A340185 A340186 A340187 * A340189 A340190 A340191

KEYWORD

sign

AUTHOR

Antti Karttunen, Dec 31 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 22:38 EST 2021. Contains 340247 sequences. (Running on oeis4.)