The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340183 a(n) = Product_{1<=j,k,m<=n-1} (4*sin(j*Pi/(2*n))^2 + 4*sin(k*Pi/(2*n))^2 + 4*sin(m*Pi/(2*n))^2). 3
 1, 6, 1157625, 170875128460147163136, 448524809573174705684873233798538664686384705625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS (a(n)/(n*3^(n-1))^(1/3) is an integer. LINKS FORMULA a(n) = Product_{1<=i,j,k<=n-1} (4*f(i*Pi/(2*n))^2 + 4*g(j*Pi/(2*n))^2 + 4*h(k*Pi/(2*n))^2), where f(x), g(x) and h(x) are sin(x) or cos(x). Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021 MATHEMATICA Round[Table[2^((n-1)^3)* Product[3 - Cos[j*Pi/n] - Cos[k*Pi/n] - Cos[m*Pi/n], {j, 1, n-1}, {k, 1, n-1}, {m, 1, n-1}], {n, 1, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *) PROG (PARI) default(realprecision, 500); {a(n) = round(prod(j=1, n-1, prod(k=1, n-1, prod(m=1, n-1, 4*sin(j*Pi/(2*n))^2+4*sin(k*Pi/(2*n))^2+4*sin(m*Pi/(2*n))^2))))} CROSSREFS Cf. A007341, A124647, A340181, A340182. Sequence in context: A182791 A336397 A235589 * A115476 A297528 A172876 Adjacent sequences:  A340180 A340181 A340182 * A340184 A340185 A340186 KEYWORD nonn,changed AUTHOR Seiichi Manyama, Dec 31 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:55 EST 2021. Contains 340247 sequences. (Running on oeis4.)