login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291464
Primes p such that p^3*q^3 + p^2 + q^2 is prime, where q is next prime after p.
1
2, 11, 13, 41, 97, 277, 389, 1093, 1229, 1409, 1429, 1627, 1823, 1931, 1979, 2437, 2521, 2549, 2657, 2689, 2719, 2729, 2731, 2969, 3019, 3413, 3539, 3593, 3613, 3623, 3697, 4003, 4027, 4289, 4327, 4583, 4751, 5051, 5323, 5503, 5657, 5783, 6143, 6221, 6299, 6329
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 2 is prime; 3 is the next prime: 2^3*3^3 + 2^2 + 3^2 = 8*27 + 4 + 9 = 229 that is a prime.
a(2) = 11 is prime; 13 is the next prime: 11^3*13^3 + 11^2 + 13^2 = 1331*2197 + 121 + 169 = 2924497 that is a prime.
MAPLE
select(p -> andmap(isprime, [p, (p^3*nextprime(p)^3+p^2+nextprime(p)^2)]), [seq(p, p=1..10^4)]);
MATHEMATICA
Select[Prime[Range[5000]], PrimeQ[#^3*NextPrime[#]^3 + #^2 + NextPrime[#]^2] &]
Select[Partition[Prime[Range[1000]], 2, 1], PrimeQ[#[[1]]^3 #[[2]]^3+#[[1]]^2+#[[2]]^2]&][[;; , 1]] (* Harvey P. Dale, Sep 11 2023 *)
PROG
(PARI) forprime(p=1, 5000, q=nextprime(p+1); p3=p^3; p2=p^2; q3=q^3; q2=q^2; if(ispseudoprime(p3*q3 + p2 + q2), print1(p, ", ")));
(Magma) [p: p in PrimesUpTo(5000) | IsPrime(p^3*q^3 + p^2 + q^2) where q is NextPrime(p)];
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Aug 24 2017
STATUS
approved