login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p^3*q^3 + p^2 + q^2 is prime, where q is next prime after p.
1

%I #14 Sep 11 2023 13:13:53

%S 2,11,13,41,97,277,389,1093,1229,1409,1429,1627,1823,1931,1979,2437,

%T 2521,2549,2657,2689,2719,2729,2731,2969,3019,3413,3539,3593,3613,

%U 3623,3697,4003,4027,4289,4327,4583,4751,5051,5323,5503,5657,5783,6143,6221,6299,6329

%N Primes p such that p^3*q^3 + p^2 + q^2 is prime, where q is next prime after p.

%H Robert Israel, <a href="/A291464/b291464.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 2 is prime; 3 is the next prime: 2^3*3^3 + 2^2 + 3^2 = 8*27 + 4 + 9 = 229 that is a prime.

%e a(2) = 11 is prime; 13 is the next prime: 11^3*13^3 + 11^2 + 13^2 = 1331*2197 + 121 + 169 = 2924497 that is a prime.

%p select(p -> andmap(isprime,[p,(p^3*nextprime(p)^3+p^2+nextprime(p)^2)]), [seq(p, p=1..10^4)]);

%t Select[Prime[Range[5000]], PrimeQ[#^3*NextPrime[#]^3 + #^2 + NextPrime[#]^2] &]

%t Select[Partition[Prime[Range[1000]],2,1],PrimeQ[#[[1]]^3 #[[2]]^3+#[[1]]^2+#[[2]]^2]&][[;;,1]] (* _Harvey P. Dale_, Sep 11 2023 *)

%o (PARI) forprime(p=1, 5000, q=nextprime(p+1); p3=p^3; p2=p^2; q3=q^3; q2=q^2; if(ispseudoprime(p3*q3 + p2 + q2), print1(p, ", ")));

%o (Magma) [p: p in PrimesUpTo(5000) | IsPrime(p^3*q^3 + p^2 + q^2) where q is NextPrime(p)];

%Y Cf. A000040, A001043, A006094, A030078, A096342, A120398, A126148, A152241, A291339, A291374.

%K nonn

%O 1,1

%A _K. D. Bajpai_, Aug 24 2017