OFFSET
0,8
COMMENTS
This sequence is one generalization of Dana Scott's sequence (A048736).
a(n) is integer for all n.
The recursion exhibits the Laurent phenomenon. See A278706 for the exponents of the denominator of the Laurent polynomial. - Michael Somos, Nov 26 2016
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..26
FORMULA
a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5).
a(6-n) = a(n) for all n in Z.
PROG
(Ruby)
def A(k, n)
a = Array.new(k, 1)
ary = [1]
while ary.size < n + 1
i = a[-1] * a[1] + a[2..-2].inject(:*)
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276532(n)
A(7, n)
end
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 16 2016
STATUS
approved