login
A276532
a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5)) / a(n-7), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1.
3
1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 11, 41, 371, 7507, 429563, 419408854, 9811194604889, 45615501062085527113, 323645006689468299915979814409, 217332607887523478570092794860281557159140687, 8092345737591989154121803868154457767563221634145658745306515944569
OFFSET
0,8
COMMENTS
This sequence is one generalization of Dana Scott's sequence (A048736).
a(n) is integer for all n.
The recursion exhibits the Laurent phenomenon. See A278706 for the exponents of the denominator of the Laurent polynomial. - Michael Somos, Nov 26 2016
LINKS
FORMULA
a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5).
a(6-n) = a(n) for all n in Z.
PROG
(Ruby)
def A(k, n)
a = Array.new(k, 1)
ary = [1]
while ary.size < n + 1
i = a[-1] * a[1] + a[2..-2].inject(:*)
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276532(n)
A(7, n)
end
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 16 2016
STATUS
approved