login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276534
a(n) = a(n-1) * a(n-4) * (a(n-2) * a(n-3) + 1) / a(n-5), with a(0) = a(1) = a(2) = a(3) = a(4) = 1.
2
1, 1, 1, 1, 1, 2, 4, 12, 108, 10584, 27454896, 94148851006224, 246222177535609206635748240, 62371770277951054762478578990896212287188931341600, 3750595553941161278345366267513070968239986992860645038477600300348697171928615364721752014400
OFFSET
0,6
COMMENTS
Inspired by Somos-5 sequence.
a(n) is integer for n >= 0.
a(n+1)/a(n) is integer for n >= 0.
LINKS
FORMULA
a(n) * a(n-5) = a(n-1) * a(n-4) + a(n-1) * a(n-2) * a(n-3) * a(n-4).
a(4-n) = a(n).
Let b(n) = b(n-4) * (b(n-2) * (b(0) * b(1) * ... * b(n-3))^2 + 1) with b(0) = b(1) = b(2) = b(3) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0.
EXAMPLE
a(5) = a(4) * b(4) = 1 * 2 = 2,
a(6) = a(5) * b(5) = 2 * 2 = 4,
a(7) = a(6) * b(6) = 4 * 3 = 12,
a(8) = a(7) * b(7) = 12 * 9 = 108.
PROG
(Ruby)
def A(k, n)
a = Array.new(2 * k + 1, 1)
ary = [1]
while ary.size < n + 1
i = 0
k.downto(1){|j|
i += 1
i *= a[j] * a[-j]
}
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276534(n)
A(2, n)
end
CROSSREFS
Sequence in context: A327563 A326950 A001696 * A326969 A304986 A013333
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 16 2016
STATUS
approved