login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276535
a(n) = a(n-1) * a(n-6) * (a(n-2) * a(n-5) * (a(n-3) * a(n-4) + 1) + 1) / a(n-7), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1.
2
1, 1, 1, 1, 1, 1, 1, 3, 9, 63, 2331, 4114215, 16341764835375, 266584861903285121344257375, 7896333852271846954822982651737848156847060737115875, 2309336603704915706429640788623787983392652603516450553629239932054220008270731649775618317371336467375
OFFSET
0,8
COMMENTS
Inspired by Somos-7 sequence.
a(n) is integer for n >= 0.
a(n+1)/a(n) is integer for n >= 0.
LINKS
FORMULA
a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-1) * a(n-2) * a(n-5) * a(n-6) + a(n-1) * a(n-2) * a(n-3) * a(n-4) * a(n-5) * a(n-6).
a(6-n) = a(n).
Let b(n) = b(n-6) * (b(n-2) * b(n-3) * b(n-4) * (b(0) * b(1) * ... * b(n-5))^2 * (b(n-3) * (b(0) * b(1) * ... * b(n-4))^2 + 1)+ 1) with b(0) = b(1) = b(2) = b(3) = b(4) = b(5) = 1, then a(n) = a(n-1) * b(n-1) = b(0) * b(1) * ... * b(n-1) for n > 0.
EXAMPLE
a(7) = a(6) * b(6) = 1 * 3 = 3,
a(8) = a(7) * b(7) = 3 * 3 = 9,
a(9) = a(8) * b(8) = 9 * 7 = 63,
a(10) = a(9) * b(9) = 63 * 37 = 2331.
PROG
(Ruby)
def A(k, n)
a = Array.new(2 * k + 1, 1)
ary = [1]
while ary.size < n + 1
i = 0
k.downto(1){|j|
i += 1
i *= a[j] * a[-j]
}
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276535(n)
A(3, n)
end
CROSSREFS
Sequence in context: A245165 A091760 A144525 * A228776 A087673 A046239
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 16 2016
STATUS
approved