login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046239
Numbers whose cube is palindromic in base 8.
1
0, 1, 3, 9, 65, 73, 513, 4097, 4161, 32769, 262145, 262657, 2097153, 16777217, 16781313, 134217729, 1073741825, 1073774593, 8589934593, 68719476737, 68719738881
OFFSET
1,3
LINKS
Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
PROG
(PARI) isok(k) = my(d=digits(k^3, 8)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
(Python)
from itertools import count, islice
from sympy.ntheory import is_palindromic as ispal
def agen(start=0): yield from (k for k in count(start) if ispal(k**3, 8))
print(list(islice(agen(), 12))) # Michael S. Branicky, Aug 02 2022
CROSSREFS
Cf. A046240.
Sequence in context: A276535 A228776 A087673 * A093351 A018543 A026090
KEYWORD
nonn,base,more
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
More terms from Ryan Propper, May 30 2006
STATUS
approved