Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Sep 22 2021 11:28:07
%S 0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,18,0,20,0,0,0,36,0,0,0,0,0,30,0,0,
%T 0,0,0,66,0,0,0,60,0,42,0,0,0,0,0,84,0,0,0,0,0,72,0,56,0,0,0,122,0,0,
%U 0,0,0,66,0,0,0,70,0,162,0,0,0,0,0,78,0,140,0,0,0,138,0,0,0,88,0,138,0,0,0,0,0,180
%N Sum of the abundant divisors of n.
%C Sum of divisors d of n with sigma(d) > 2*d.
%C a(n) = n when n is a primitive abundant number (A091191). - _Alonso del Arte_, Jan 19 2013
%H Charles R Greathouse IV, <a href="/A187795/b187795.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>
%F From _Antti Karttunen_, Nov 14 2017: (Start)
%F a(n) = Sum_{d|n} A294937(d)*d.
%F a(n) = A294889(n) + (A294937(n)*n).
%F If A294889(n) > 0, then a(n) = A294889(n)+n, otherwise a(n) = A294930(n)*n.
%F a(n) + A187794(n) + A187793(n) = A000203(n).
%F (End)
%e a(12) = 12 because the divisors of 12 are 1, 2, 3, 4, 6, 12, but of those only 12 is abundant.
%e a(13) = 0 because the divisors of 13 are 1 and 13, neither of which is abundant.
%p A187795 := proc(n)
%p local a,d;
%p a :=0 ;
%p for d in numtheory[divisors](n) do
%p if numtheory[sigma](d) > 2* d then
%p a := a+d ;
%p end if;
%p end do:
%p return a;
%p end proc:
%p seq(A187795(n),n=1..100) ; # _R. J. Mathar_, Apr 27 2017
%t Table[Total@ Select[Divisors@ n, DivisorSigma[1, #] > 2 # &], {n, 96}] (* _Michael De Vlieger_, Jul 16 2016 *)
%o (PARI) a(n)=sumdiv(n,d,(sigma(d,-1)>2)*d) \\ _Charles R Greathouse IV_, Jan 15 2013
%o (Python)
%o from sympy import divisors, divisor_sigma
%o def A187795(n): return sum(d for d in divisors(n,generator=True) if divisor_sigma(d) > 2*d) # _Chai Wah Wu_, Sep 22 2021
%Y Cf. A000203, A005101, A080224, A270660, A271113, A294889, A294930, A294937.
%K nonn,easy
%O 1,12
%A _Timothy L. Tiffin_, Jan 06 2013